Abstract:
A pigment grind dispersion of titanium dioxide pigment-polymer composite particles is made by mixing titanium dioxide particles with an aqueous emulsion containing (i) less than a saturation level amount of water-insoluble film-forming first polymer particles that adsorb to the titanium dioxide particles, and (ii) an inhibiting or interfering amount of water-insoluble film-forming second polymer particles that do not adsorb to the titanium dioxide particles, wherein the pigment grind dispersion has a titanium dioxide pigment volume concentration of about 25 to about 50 and a titania composite ratio of about 32 to about 60. The resulting titanium dioxide pigment-polymer composite particles can provide improved coating composition opacity compared to a coating composition that does not contain such composite particles, can employ reduced titanium dioxide amounts and less than a saturation level of the first polymer, and can provide improved storage stability.
Abstract:
Titanium dioxide may be more efficiently used in a coating composition containing a composite pigment particle-forming polymer if during composite formation, the polymer is initially present in a low concentration and the titanium dioxide particles and newly- formed composite particles are dispersed in a waterborne emulsion polymer that does not form such a composite. A pigment grind dispersion of titanium dioxide pigment-polymer composite particles may be made by mixing titanium dioxide particles with the waterborne emulsion polymer. The composite-forming polymer is then added to the waterborne emulsion polymer, or is added independently and concurrently with the titanium dioxide particles. The resulting titanium dioxide pigment-polymer composite particles provide improved coating composition opacity compared to a coating composition that does not contain such composite particles. The coating compositions can contain reduced titanium dioxide amounts and less than a saturation level of the composite-forming polymer.
Abstract:
A pigment grind dispersion of titanium dioxide pigment-polymer composite particles is made by mixing titanium dioxide particles with an aqueous emulsion containing (i) less than a saturation level amount of water-insoluble film-forming first polymer particles that adsorb to the titanium dioxide particles, and (ii) an inhibiting or interfering amount of water-insoluble film-forming second polymer particles that do not adsorb to the titanium dioxide particles, wherein the pigment grind dispersion has a titanium dioxide pigment volume concentration of about 25 to about 50 and a titania composite ratio of about 32 to about 60. The resulting titanium dioxide pigment-polymer composite particles can provide improved coating composition opacity compared to a coating composition that does not contain such composite particles, can employ reduced titanium dioxide amounts and less than a saturation level of the first polymer, and can provide improved storage stability.
Abstract:
A pigment grind dispersion of titanium dioxide pigment-polymer composite particles is made by mixing titanium dioxide particles with an aqueous emulsion containing (i) less than a saturation level amount of water-insoluble film-forming first polymer particles that adsorb to the titanium dioxide particles, and (ii) an inhibiting or interfering amount of water-insoluble film-forming second polymer particles that do not adsorb to the titanium dioxide particles, wherein the pigment grind dispersion has a titanium dioxide pigment volume concentration of about 25 to about 50 and a titania composite ratio of about 32 to about 60. The resulting titanium dioxide pigment-polymer composite particles can provide improved coating composition opacity compared to a coating composition that does not contain such composite particles, can employ reduced titanium dioxide amounts and less than a saturation level of the first polymer, and can provide improved storage stability.
Abstract:
Titanium dioxide may be more efficiently used in a coating composition containing a composite pigment particle-forming polymer if during composite formation, the polymer is initially present in a low concentration and the titanium dioxide particles and newly- formed composite particles are dispersed in a waterborne emulsion polymer that does not form such a composite. A pigment grind dispersion of titanium dioxide pigment-polymer composite particles may be made by mixing titanium dioxide particles with the waterborne emulsion polymer. The composite-forming polymer is then added to the waterborne emulsion polymer, or is added independently and concurrently with the titanium dioxide particles. The resulting titanium dioxide pigment-polymer composite particles provide improved coating composition opacity compared to a coating composition that does not contain such composite particles. The coating compositions can contain reduced titanium dioxide amounts and less than a saturation level of the composite-forming polymer.
Abstract:
Titanium dioxide may be more efficiently used in a coating composition containing a composite pigment particle-forming polymer if during composite formation, the polymer is initially present in a low concentration and the titanium dioxide particles and newly- formed composite particles are dispersed in a waterborne emulsion polymer that does not form such a composite. A pigment grind dispersion of titanium dioxide pigment-polymer composite particles may be made by mixing titanium dioxide particles with the waterborne emulsion polymer. The composite-forming polymer is then added to the waterborne emulsion polymer, or is added independently and concurrently with the titanium dioxide particles. The resulting titanium dioxide pigment-polymer composite particles provide improved coating composition opacity compared to a coating composition that does not contain such composite particles. The coating compositions can contain reduced titanium dioxide amounts and less than a saturation level of the composite-forming polymer.
Abstract:
A coating composition including a rheology modifier is described. The rheology modifier is a water-soluble polyurethane made by the condensation of a poly(alkylene glycol), a polyisocyanate and a compound including a polyalkoxylated chain and a hydrophobic end group. The composition demonstrates Leneta sag resistance of greater than about 14 and a Leneta flow and leveling of at least about 9, and a Stormer viscosity of less than about 120 Krebs units.
Abstract:
A pigment grind dispersion of titanium dioxide pigment-polymer composite particles is made by mixing titanium dioxide particles with an aqueous emulsion containing (i) less than a saturation level amount of water-insoluble film-forming first polymer particles that adsorb to the titanium dioxide particles, and (ii) an inhibiting or interfering amount of water-insoluble film-forming second polymer particles that do not adsorb to the titanium dioxide particles, wherein the pigment grind dispersion has a titanium dioxide pigment volume concentration of about 25 to about 50 and a titania composite ratio of about 32 to about 60. The resulting titanium dioxide pigment-polymer composite particles can provide improved coating composition opacity compared to a coating composition that does not contain such composite particles, can employ reduced titanium dioxide amounts and less than a saturation level of the first polymer, and can provide improved storage stability.
Abstract:
Titanium dioxide may be more efficiently used in a coating composition containing a composite pigment particle-forming polymer if during composite formation, the polymer is initially present in a low concentration and the titanium dioxide particles and newly-formed composite particles are dispersed in a waterborne emulsion polymer that does not form such a composite. A pigment grind dispersion of titanium dioxide pigment-polymer composite particles may be made by mixing titanium dioxide particles with the waterborne emulsion polymer. The composite-forming polymer is then added to the waterborne emulsion polymer, or is added independently and concurrently with the titanium dioxide particles. The resulting titanium dioxide pigment-polymer composite particles provide improved coating composition opacity compared to a coating composition that does not contain such composite particles. The coating compositions can contain reduced titanium dioxide amounts and less than a saturation level of the composite-forming polymer.