Abstract:
A pitch system (20) for rotating a blade (4) of a wind turbine relative to a hub (6) generally comprises a bearing (22) having an inner bearing ring (30) configured to be mounted to the hub and an outer bearing ring (32) configured to be mounted to the blade. A first coupling member (24) positioned between the hub and inner bearing ring extends radially inward. A second coupling member (26) positioned between the blade and outer bearing ring extends radially inward and over the inner bearing ring. A drive system (28) includes a first drive member (34) coupled to the first coupling member and a first driven member (36) coupled to the second coupling member. The first drive member is configured to move the first driven member to rotate the outer bearing ring relative to the inner bearing ring and thereby pitch the blade.
Abstract:
A method of starting up wind turbine (10) comprises heating first and second components, the first component (32) having a first minimum operating temperature and the second component (42) having a second minimum operating temperature. Heat loss is generated after the second component has been heated to the second minimum operating temperature. The heat loss is transferred to the first component to assist heating the first component to the first minimum operating temperature. The first and second components are cooled after reaching the first and second minimum operating temperatures.
Abstract:
The invention provides a bearing for attaching a wind turbine blade to a wind turbine hub, the bearing comprising a stationary ring, a movable ring which can rotate relative to the stationary ring, a grease lubrication structure, and a canister for collecting grease. The grease lubrication structure forms an outlet for releasing grease from a space between the stationary ring and the movable ring and the canister comprises an inner space with at least one inlet in releasable fluid communication with the outlet. The outlet and the inlet comprise cooperating coupling elements adapted for releasable snap-connection of the outlet to the inlet. Due to the snap-connection, the canister is easily removed and replaced in connection with maintenance of the wind turbine even though the space in the hub is typically very limited.
Abstract:
A wind turbine is described which comprises a tower, a nacelle mounted to the top of the tower, and a rotor mounted to the nacelle. The rotor comprises two or more blades mounted to a central hub. The hub supports two or more annular pitch bearings associated respectively with the two or more blades. Each pitch bearing defines a bearing plane inclined at a first angle with respect to a horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower. Each pitch bearing is spanned by a hub plate; and a work platform integral with or mounted to the hub plate lies generally in a plane at a second angle to the horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower, which second angle is less than the first angle. The work platform provides a substantially horizontal platform for use by maintenance personnel when installing or servicing components in and around the hub.
Abstract:
The invention provides a hub for a wind turbine, the hub comprising a continuous shell being assembled from at least two shell parts. To improve stiffness of the hub, a plate element is attached within blade flanges of the assembled hub. Due to the combination between shell parts and a plate element, manufacturing and transportation is facilitated while strength and rigidity is ensured.
Abstract:
The invention relates to a bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprise a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces. To minimize friction, at least one of said at least one row of rolling elements comprises means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements. The invention also relates to a method for transferring forces through a bearing of a wind turbine.
Abstract:
The invention provides a bearing for attaching a wind turbine blade to a wind turbine hub, the bearing comprising a stationary ring, a movable ring which can rotate relative to the stationary ring, a grease lubrication structure, and a canister for collecting grease. The grease lubrication structure forms an outlet for releasing grease from a space between the stationary ring and the movable ring and the canister comprises an inner space with at least one inlet in releasable fluid communication with the outlet. The outlet and the inlet comprise cooperating coupling elements adapted for releasable snap-connection of the outlet to the inlet. Due to the snap-connection, the canister is easily removed and replaced in connection with maintenance of the wind turbine even though the space in the hub is typically very limited.
Abstract:
The invention provides a bearing for attaching a wind turbine blade to a wind turbine hub, the bearing comprising a stationary ring, a movable ring which can rotate relative to the stationary ring, a grease lubrication structure, and a canister for collecting grease. The grease lubrication structure forms an outlet for releasing grease from a space between the stationary ring and the movable ring and the canister comprises an inner space with at least one inlet in releasable fluid communication with the outlet. The outlet and the inlet comprise cooperating coupling elements adapted for releasable snap-connection of the outlet to the inlet. Due to the snap-connection, the canister is easily removed and replaced in connection with maintenance of the wind turbine even though the space in the hub is typically very limited.
Abstract:
A wind turbine is described which comprises a tower, a nacelle mounted to the top of the tower, and a rotor mounted to the nacelle. The rotor comprises two or more blades mounted to a central hub. The hub supports two or more annular pitch bearings associated respectively with the two or more blades. Each pitch bearing defines a bearing plane inclined at a first angle with respect to a horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower. Each pitch bearing is spanned by a hub plate; and a work platform integral with or mounted to the hub plate lies generally in a plane at a second angle to the horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower, which second angle is less than the first angle. The work platform provides a substantially horizontal platform for use by maintenance personnel when installing or servicing components in and around the hub.