Abstract:
The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system.
Abstract:
Embodiments of the invention generally relate to wind turbine generators, and more specifically to the deactivation of wind turbines in a wind turbine park. A wind park controller may be configured to retrieve data indicating fatigue experienced by each wind turbine of the wind turbine park, and deactivate those turbines determined to be the most fatigued, thereby increasing the lifetime of turbines in the wind turbine park.
Abstract:
A method of operating a wind turbine is provided. The wind turbine comprises a turbine rotor with at least two blades, each blade having a variable pitch angle. The method comprises determining mechanical loads on the blades, determining an asymmetric load moment experienced by the turbine rotor based on the mechanical loads on the blades, determining high order harmonics from the asymmetric load moment, and determining an individual pitch control signal for each of the blades for varying the pitch angle of each blade to compensate for the asymmetric load moment. The individual pitch control signal for each blade is determined at least based on the high order harmonics.
Abstract:
A method of operating a wind turbine has the following steps: receiving (13) multiple sensor signals being indicative of the state of the wind turbine (19); analyzing (14) the multiple sensor signals in order to determine whether a specific alarm condition is met as predefined in one of a plurality of different predefined alarm scenarios (30); further analyzing (15) at least one of the multiple sensor signals in accordance with analyzing steps as predefined in the alarm scenario (30) for which the specific alarm condition is met in order to determine (16) whether the wind turbine (19) is to be put into either a predefined safe mode, a shutdown mode or a continued operation mode.
Abstract:
A wind turbine control system suitable for minimising actuation of pitch actuators is disclosed. The control system uses an error gain schedule in full load control for reducing pitch actuation when the difference between the rotor speed and the reference rotor speed is not critical for the load of wind turbine components. The error gain schedule may be a nonlinear function which reduces the gain for low rotor speed errors. The use of the error gain schedule may reduce wear of the pitch actuators and may improve reduction of structural oscillations since focus removed from tracking the rotor speed reference when the speed error is low.
Abstract:
The invention relates to a method of controlling a wind turbine, the wind turbine comprising wind turbine blades attached to a rotor hub and a control system for pitching the blades relative to the hub. The method comprises providing wake sectors assigned to different wind directions and providing a normal pitch schedule to control an output parameter of the wind turbine (e.g. power, rotational speed), comprising pitch reference values as a function of the wind speed and at least one of the parameters of thrust coefficient C t and axial induction factor a. Further, is provided a modified pitch schedule to control a modified output parameter of the wind turbine, comprising pitch reference values in dependence of the wind speed and at least one modified parameter of the thrust coefficient and/or the axial induction factor. Upon receiving indications of a wind speed and a wind direction at the wind turbine is determined a pitch reference value for the wind turbine blades according to the normal pitch schedule if the wind direction falls outside the wake sector and otherwise according to the modified pitch schedule. The wind turbine is then controlled according to the pitch reference value. The invention further relates to a method of controlling the wind turbines in a wind park, wherein each wind turbine in the park is controlled locally according to the above mentioned control method.
Abstract:
A method is provided for warning a wind turbine generator (WTG) (100) in a wind park (200, 400, 1300) of an extreme wind event. According to one embodiment of the method, one or more WTGs are adaptively selected to operate as front line WTGs. The one or more front line WTGs detect extreme wind events and provide a warning (230) to other WTGs. The selection of front line WTGs is adaptive to changing wind conditions. In another embodiment, a wind park (200, 400, 1300) includes a group of one or more WTGs of a first type (220) located in an inner region of the wind park and a plurality of WTGs of a second type (210) located in an outer region of the wind park that at least partially surrounds the inner region. The first type of WTG (220) is structurally weaker and/or rated for higher performance than the second type of WTG (210).
Abstract:
The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system.
Abstract:
A method is provided for warning a wind turbine generator (WTG) (100) in a wind park (200, 400, 1300) of an extreme wind event. According to one embodiment of the method, one or more WTGs are adaptively selected to operate as front line WTGs. The one or more front line WTGs detect extreme wind events and provide a warning (230) to other WTGs. The selection of front line WTGs is adaptive to changing wind conditions. In another embodiment, a wind park (200, 400, 1300) includes a group of one or more WTGs of a first type (220) located in an inner region of the wind park and a plurality of WTGs of a second type (210) located in an outer region of the wind park that at least partially surrounds the inner region. The first type of WTG (220) is structurally weaker and/or rated for higher performance than the second type of WTG (210).
Abstract:
The invention relates to a method of controlling a wind turbine, the wind turbine comprising wind turbine blades attached to a rotor hub and a control system for pitching the blades relative to the hub. The method comprises providing wake sectors assigned to different wind directions and providing a normal pitch schedule to control an output parameter of the wind turbine (e.g. power, rotational speed), comprising pitch reference values as a function of the wind speed and at least one of the parameters of thrust coefficient C, and axial induction factor a. Further, is provided a modified pitch schedule to control a modified output parameter of the wind turbine, comprising pitch reference values in dependence of the wind speed and at least one modified parameter of the thrust coefficient and/or the axial induction factor. Upon receiving indications of a wind speed and a wind direction at the wind turbine is determined a pitch reference value for the wind turbine blades according to the normal pitch schedule if the wind direction falls outside the wake sector and otherwise according to the modified pitch schedule. The wind turbine is then controlled according to the pitch reference value. The invention further relates to a method of controlling the wind turbines in a wind park, wherein each wind turbine in the park is controlled locally according to the above mentioned control method.