Abstract:
To efficiently run a wind turbine in varying wind speeds, the wind turbine may be configured to switch between two different electrical configurations that offer different efficiencies depending on wind speed. For example, a star configuration may be preferred during low wind speeds while a delta configuration is preferred for high wind speeds. Before switching, the power output by the turbine's generator may be driven to zero. Doing so, however, removes load from the rotor blades which cause the rotor speed to increase. Instead, the rotor speed may be controlled such that the speed stays at or above the speed of the rotor immediately before the generator power is ramped down. Maintaining rotor speed at or slightly above the current speed while switching between electrical configurations may mitigate the torque change experienced by the turbine and reduce the likelihood of structural failure.
Abstract:
The present invention relates to a method for operating a wind power facility during high- wind operations, the method comprising the steps of determining one or more operational parameters, and limiting one or more reactive power capabilities of the wind power facility to one or more predetermined reactive power values if at least one determined operational parameter differs from a predetermined value or a predetermined range. The one or more determined operational parameters may be a measured or estimated wind speed, or it may be based on at least a measured active power value and a measured generator speed. The present invention further relates to a wind power control module for carrying out the method.
Abstract:
A hydraulic transmission for a wind turbine that includes a rotor, one or more blades mounted to the rotor, a hydraulic pump mechanically connected to the rotor, and a hydraulic motor. The hydraulic pump and the hydraulic motor are connected to one another by a high pressure circuit. The hydraulic pump maybe a variable displacement hydraulic pump and the hydraulic motor may include a variable displacement hydraulic motor. The wind turbine, including the rotor, the blades of the rotor, the hydraulic pump, and the hydraulic motor may be controlled according to different approaches.
Abstract:
A hydraulic transmission for a wind turbine that includes a rotor, one or more blades mounted to the rotor, a hydraulic pump mechanically connected to the rotor, and a hydraulic motor. The hydraulic pump and the hydraulic motor are connected to one another by a high pressure circuit. The hydraulic pump maybe a variable displacement hydraulic pump and the hydraulic motor may include a variable displacement hydraulic motor. The wind turbine, including the rotor, the blades of the rotor, the hydraulic pump, and the hydraulic motor may be controlled according to different approaches.
Abstract:
To efficiently nm a wind turbine in varying wind speeds, the wind turbine may be configured to switch between two different electrical configurations that offer different efficiencies depending on wind speed. For example, a star configuration may be preferred during low wind speeds while a delta configuration is preferred for high wind speeds. Before switching, the power output by the turbine's generator may be driven to zero. Doing so, however, removes load from the rotor blades which cause the rotor speed to increase. Instead, the rotor speed may be controlled such that the speed stays at or above the speed of the rotor immediately before the generator power is ramped down. Maintaining rotor speed at or slightly above the current speed while switching between electrical configurations may mitigate the torque change experienced by the turbine and reduce the likelihood of structural failure.
Abstract:
A hydraulic transmission for a wind turbine that includes a rotor, one or more blades mounted to the rotor, a hydraulic pump mechanically connected to the rotor, and a hydraulic motor. The hydraulic pump and the hydraulic motor are connected to one another by a high pressure circuit. The hydraulic pump maybe a variable displacement hydraulic pump and the hydraulic motor may include a variable displacement hydraulic motor. The wind turbine, including the rotor, the blades of the rotor, the hydraulic pump, and the hydraulic motor may be controlled according to different approaches.
Abstract:
To efficiently nm a wind turbine in varying wind speeds, the wind turbine may be configured to switch between two different electrical configurations that offer different efficiencies depending on wind speed. For example, a star configuration may be preferred during low wind speeds while a delta configuration is preferred for high wind speeds. Before switching, the power output by the turbine's generator may be driven to zero. Doing so, however, removes load from the rotor blades which cause the rotor speed to increase. Instead, the rotor speed may be controlled such that the speed stays at or above the speed of the rotor immediately before the generator power is ramped down. Maintaining rotor speed at or slightly above the current speed while switching between electrical configurations may mitigate the torque change experienced by the turbine and reduce the likelihood of structural failure.