Abstract:
A lightning current transfer unit (100) for a wind turbine, the lightning current transfer unit (100) comprising a first portion (20a) configured to be electrically coupled to an electrically conducting portion of a blade of a wind turbine electrically connected to a down conductor of the blade and a second portion (20b) configured to be electrically coupled to an electrically conducting portion of a nacelle of the wind turbine connected to a down conductor connected to earth. The first portion (20a) and the second portion (20b) are both independently movable to maintain electrical coupling to the electrically conducting portion of the blade and nacelle respectively. A lightning current transfer portion (104) is provided that comprises a spark gap (106) formed between an electrical connection (108) to the first portion (20a) and an electrical connection (110) to the second portion (20b). The electrical connections (108, 110) are moveable with their respective first or second portion (20a, 20b). The spark gap (106) has a spark gap distance (111) and the lightning current transfer portion (104) is configured such that the distance is substantially constant during movement of the first portion (20a), second portion (20b) and electrical connections and such that lightning current is transferred from the first portion (20a) to the second portion (20b).
Abstract:
A wind turbine blade, comprising a proximal end, where the blade is to be attached to a hub at a blade root; and a distal end, where the blade tapers to form a blade tip, wherein the blade further comprises at least a first longitudinal blade zone comprising at least the blade tip and a second longitudinal blade zone comprising a longitudinal section of the blade, wherein the blade tip in the first blade zone comprises a metallic electrical conductor which is connected to a lightning down conductor, the second blade zone comprises a load-bearing spar in the blade for providing structural support for the blade and extends proximally from the second blade zone to the blade root, wherein the spar is covered with a medium in the second blade zone to reduce the occurrence of a direct lightning connection to the spar.
Abstract:
A lightning current transfer unit (100) for a wind turbine, the lightning current transfer unit (100) comprising a first portion (20a) configured to be electrically coupled to an electrically conducting portion of a blade of a wind turbine electrically connected to a down conductor of the blade and a second portion (20b) configured to be electrically coupled to an electrically conducting portion of a nacelle of the wind turbine connected to a down conductor connected to earth. The first portion (20a) and the second portion (20b) are both independently movable to maintain electrical coupling to the electrically conducting portion of the blade and nacelle respectively. A lightning current transfer portion (104) is provided that comprises a spark gap (106) formed between an electrical connection (108) to the first portion (20a) and an electrical connection (110) to the second portion (20b). The electrical connections (108, 110) are moveable with their respective first or second portion (20a, 20b). The spark gap (106) has a spark gap distance (111) and the lightning current transfer portion (104) is configured such that the distance is substantially constant during movement of the first portion (20a), second portion (20b) and electrical connections and such that lightning current is transferred from the first portion (20a) to the second portion (20b).