Abstract:
A method for monitoring the operation of a wind turbine generator comprising the steps of sampling a physical parameter related to said apparatus to produce an initial data set, conducting a statistical analysis on said initial data set to establish initial statistical values for said parameter; after a predetermined interval, re-sampling the physical parameter to create a re-sampled data set; conducting statistical analysis on the re-sampled data set to establish subsequent statistical values; comparing said subsequent statistical values with the initial statistical values and; selecting an action based upon said comparison.
Abstract:
A wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 and an indication of a plurality of environmental conditions of the wind turbine 69. It is also configured to receive an indication of an error relating to the operation of the wind turbine71. These indications are processed by the detector 65 to provide an indication of ice accretion of a wind turbine blade. In addition to or as an alternative, the wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 in a plurality of different time periods and an indication of a plurality of environmental conditions of the wind turbine 69 in the plurality of different time periods; and to process these to provide an indication of ice accretion of a wind turbine blade.
Abstract:
The present invention relates to a method of controlling a wind turbine having at least one blade and a controller, including : detect location of foreign material adhered to the blade by sensors mounted on the blade and communicatively coupled to the controller; determine the resonance mode of the blade to be excited based on the location of the foreign material by the controller; and excite the blade to the resonance mode; wherein the resonance mode is one higher than the first order resonance mode. The present invention also relates to a wind turbine using the method.
Abstract:
A system for scheduling maintenance of a component in a wind turbine. The system receives signals from each of the wind turbines in a population of wind turbines. From the signals, the system detects a failure of the component in one of the wind turbine. In response to the detect failure, the system calculates a new life value for the component. The life value is then compared to a threshold value. If the life value is within a specified parameter compared to the threshold value, the system schedules a change of the component in all of the wind turbines in the population.
Abstract:
A wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 and an indication of a plurality of environmental conditions of the wind turbine 69. It is also configured to receive an indication of an error relating to the operation of the wind turbine71. These indications are processed by the detector 65 to provide an indication of ice accretion of a wind turbine blade. In addition to or as an alternative, the wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 in a plurality of different time periods and an indication of a plurality of environmental conditions of the wind turbine 69 in the plurality of different time periods; and to process these to provide an indication of ice accretion of a wind turbine blade.
Abstract:
The present invention relates to a method of controlling a wind turbine having at least one blade and a controller, including: detect location of foreign material adhered to the blade by sensors mounted on the blade and communicatively coupled to the controller; determine the resonance mode of the blade to be excited based on the location of the foreign material by the controller; and excite the blade to the resonance mode; wherein the resonance mode is one higher than the first order resonance mode. The present invention also relates to a wind turbine using the method.
Abstract:
The present invention relates to a method of controlling a wind turbine having at least one blade and a controller, including: detect location of foreign material adhered to the blade by sensors mounted on the blade and communicatively coupled to the controller; determine the resonance mode of the blade to be excited based on the location of the foreign material by the controller; and excite the blade to the resonance mode; wherein the resonance mode is one higher than the first order resonance mode. The present invention also relates to a wind turbine using the method.
Abstract:
A wind turbine installation monitoring device, for detecting relative movement between two adjacent components of a wind turbine installation is provided. The device comprises a deformable member together with a securing device. The securing device is configured to enable the device to be connectable to a wind turbine installation, in use. The deformable member is located across an interface between the adjacent components of a wind turbine installation. Further, a detection device is provided and configured to detect deflection of the deformable member and thereby to detect relative movement between the two components.
Abstract:
A method for monitoring the operation of a wind turbine generator comprising the steps of sampling a physical parameter related to said apparatus to produce an initial data set, conducting a statistical analysis on said initial data set to establish initial statistical values for said parameter; after a predetermined interval, re-sampling the physical parameter to create a re-sampled data set; conducting statistical analysis on the resampled data set to establish subsequent statistical values; comparing said subsequent statistical values with the initial statistical values and; selecting an action based upon said comparison.