Abstract:
A wind turbine blade has a blade body and a leading edge fairing. The blade body has a root, a tip, and a longitudinal direction extending between the root and the tip. The 5 blade body also has a channel extending in the longitudinal direction. The leading edge fairing has a projection extending into the channel and extending in the longitudinal direction so as to be received in the channel. Also, a leading edge fairing for attachment to a blade body of a wind turbine blade; a method of fitting a leading edge fairing to a wind turbine blade; and a kit of parts with a number of the leading edge fairings.
Abstract:
A covering for a wind turbine blade (20). The covering may have a film (30) having at least one aerodynamic device (42, 43) pre-attached to it. In the manufacture of a wind turbine blade, the film having the aerodynamic device (42, 43) pre-attached is attached to a shell of a wind turbine blade (20).
Abstract:
Wind turbine blade (1) comprising a first blade part (2) and a second blade part (3), said blade parts (2, 3) being bonded by bonding means forming a bond (4). To reduce peel stresses of the bond and reduce the risk of crack formation, an edge portion of the bond (4) is covered by a low elastic modulus adhesive joint (5) bridging a gap between the first blade part (2) and the second blade part (3).
Abstract:
Wind turbine blade (1) comprising a first blade part (2) and a second blade part (3), said blade parts (2, 3) being bonded by bonding means forming a bond (4). To reduce peel stresses of the bond and reduce the risk of crack formation, an edge portion of the bond (4) is covered by a low elastic modulus adhesive joint (5) bridging a gap between the first blade part (2) and the second blade part (3).
Abstract:
A method of making a structural component (80) of a wind turbine blade (90) comprises providing an elongate composite strip (10) comprising structural fibres disposed in a thermoplastic matrix, the strip comprising an end portion (22) defining an end (24) of the strip, heating the end portion of the strip and shaping the end portion of the strip to form a tapered end (30) of the strip.
Abstract:
Wind turbine blade (1) comprising a first blade part (2) and a second blade part (3), said blade parts (2, 3) being bonded by bonding means forming a bond (4). To reduce peel stresses of the bond and reduce the risk of crack formation, an edge portion of the bond (4) is covered by a low elastic modulus adhesive joint (5) bridging a gap between the first blade part (2) and the second blade part (3).