Abstract:
The invention relates to control of a wind turbine comprising a plurality of multi-axial accelerometers mounted at different positions in the nacelle and/or in a top portion of the tower. The position and orientation of each accelerometer as mounted is obtained, accelerations in at least two different directions by each accelerometer are measured during operation of the wind turbine. From a number of pre-determined mode shapes for the movement of the wind turbine is then determined an absolute position of at least one of the accelerometers during operation of the wind turbine based on the measured accelerations, the mount position and orientation of each accelerometer and the pre-determined mode shapes. Hereby a more precise absolute position during operation is obtained which can be used in the controlling of the turbine.
Abstract:
The present disclosure relates to a control of a wind turbine in connection with power boosting or fast increase of active power production. A boost command is received (63) and based on the current operational state and the boost level a predicted control trajectory is calculated using a model predictive control (MPC) routine (64). The wind turbine is controlled using the calculated control trajectory during the power boost (65).
Abstract:
The present disclosure relates to a control of a wind turbine in connection with power boosting or fast increase of active power production. A boost command is received (63) and based on the current operational state and the boost level a predicted control trajectory is calculated using a model predictive control (MPC) routine (64). The wind turbine is controlled using the calculated control trajectory during the power boost (65).