Abstract:
In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
Abstract:
In some embodiments, methods and systems of pollinating crops include one or more unmanned vehicles including a pollen applicator configured to collect pollen from a flower of a first crop and to apply the pollen collected from the flower of the first crop onto a flower of a second crop and a sensor configured to detect presence of the pollen applied to the flower of the second crop by the pollen applicator to verify that the pollen collected from the flower of the first crop by the pollen applicator was successfully applied by the pollen applicator onto the flower of the second crop.
Abstract:
Some embodiments provide an aerial monitoring system to monitor a geographic area, comprising: a unmanned aerial vehicle (UAV) comprising: a plurality of lift motors to drive a propeller; a substructural support supporting the lift motors and propellers; a UAV control circuit configured to control the operation of the lift motors; a rechargeable electrical power source that supplies electrical power to the UAV control circuit and the plurality of lift motors; a recharge control circuit; and a modifiable support system cooperated with the substructural support and supporting a set of photovoltaic cells electrically coupled with the rechargeable power source and configured to supply electrical power to the rechargeable power source, wherein the recharge control circuit is configured to control a modification of the modifiable support system to cause a physical modification of at least an orientation of the modifiable support system relative to the substructural support.
Abstract:
In some embodiments, methods and systems for fulfilling consumer orders are provided. A stocking station includes at least one robotic stocking arm configured to unload a product from a first receptacle and to place the unloaded product onto a storage shelf, and a first picking station includes a first robotic picking arm configured to pick a first product from the storage shelf and to load the first product picked from the storage shelf into a second receptacle for delivery to a consumer. An empty receptacle placement station includes at least one robotic placing arm configured to place an empty second receptacle onto a packing conveyor configured to transport the empty second receptacle toward the first picking station for loading of the first product into the empty second receptacle. An electronic inventory management device transmits a signal the empty receptacle placement station and the first robotic picking arm.
Abstract:
In some embodiments, apparatuses and methods are provided herein useful to transporting containers using an autonomous dolly. Some of these embodiments include systems for transporting containers along delivery paths comprising: an autonomous dolly having a microcontroller and a support portion configured to carry a plurality of containers; a mobile device with a microcontroller in communication with the microcontroller of the dolly; and one or more sensors in communication with the mobile device, the one or more sensors and mobile device configured to triangulate the location of the mobile device; wherein the dolly's microcontroller is configured to receive tracking information from the mobile device's microcontroller and to cause the dolly to follow the mobile device along a delivery path defined by movement of the mobile device from a starting point to an ending point.
Abstract:
In some embodiments, apparatuses and methods are provided herein useful to fulfill product orders. In some embodiments, a product order fulfillment system, comprises: a plurality of Optical Head-Mounted Display (OHMD) systems; and a customer order fulfillment system associated with a retail store and configured to wireless communicate with each of the plurality of OHMD systems, and comprising a fulfillment management circuit configured to: receive multiple different product orders; determine separate product collection routes through the retail store that are each to be respectively followed by one of one or more workers; and wirelessly communicate route information and product identifier information to the OHMD systems and cause the route information and the product identifier information to be visually displayed through the OHMD systems.
Abstract:
Upon receiving a standard unit of items at a distribution center these teachings provide for automatically determining whether to retain that standard unit of items as staple stock at the district center or to forward that unit to a retail shopping facility without first retaining that unit as staple stock at the distribution center. Such a determination can include determining whether there is a present need at the retail shopping facility for at least the standard unit of items. By one approach, these teachings will support forwarding the standard unit of items to a particular retail shopping facility that may have a present need for some of the items but less than the complete standard unit of items.
Abstract:
In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
Abstract:
In some embodiments, methods and systems of identifying at least one pest based on crop damage detection in a crop-containing area include an unmanned vehicle including at least one sensor configured to detect at least one type of pest damage on at least one crop in the crop-containing area and to capture pest damage data. An electronic database includes pest damage identity data associated with one or more crop-damaging pests, and a computing device communicates with the unmanned vehicle and the electronic database via a network. The unmanned vehicle transmits the captured pest damage data via the network to the computing device and, in response to receipt of the captured pest damage data from the unmanned vehicle, the computing device accesses the pest damage identity data on the electronic database to determine an identity of one or more pests responsible for the detected type of pest crop damage.
Abstract:
Systems, apparatuses, and methods are provided herein for mobile vending. A system for mobile vending comprises a mobile vending machine comprising: an item dispenser configured to display a plurality of items for purchase, a set of motorized wheels, a navigation sensor device, a communication device, and, a control circuit configured to navigate the mobile vending machine based on navigation instructions; and a central computer system configured to communicate with the mobile vending machine via the communication device, the central computer system being configured to: determine a destination for the mobile vending machine, provide the navigation instructions to the mobile vending machine to cause the mobile vending machine to travel to the destination using the set of motorized wheels and the navigation sensor device.