Abstract:
A method of drilling a wellbore includes drilling the wellbore through a formation by injecting drilling fluid through a drill string and rotating a drill bit. The drill string includes a shifting tool, a receiver in communication with the shifting tool, and the drill bit. The method further includes retrieving the drill string from the wellbore through a casing string until the shifting tool reaches an actuator. The casing string includes an isolation valve in an open position and the actuator. The method further includes sending a wireless instruction signal to the receiver. The shifting tool engages the actuator in response to the receiver receiving the instruction signal. The method further includes operating the actuator using the engaged shifting tool, thereby closing the isolation valve and isolating the formation from an upper portion of the wellbore.
Abstract:
A latch and method for use is provided for latching an item of oilfield equipment. The latch has a housing containing a latch member, and the latch member is movable between a radially engaged position in which it is engaged with the item of oilfield equipment, and a radially retracted position in which it is disengaged from the item of oilfield equipment. An actuator is configured to drive the latch member into the radially engaged position. Further, the actuator is configured to drive the latch member toward the radially retracted position.
Abstract:
A system and method is provided for a low profile rotating control device (LP-RCD) and its housing mounted on or integral with an annular blowout preventer seal, casing, or other housing. The LP-RCD and LP-RCD housing can fit within a limited space available on drilling rigs. An embodiment allows a LP-RCD to be removably disposed with a LP-RCD housing by rotating a bearing assembly rotating plate. A sealing element may be removably disposed with the LP-RCD bearing assembly by rotating a seal retainer ring. Alternatively, a sealing element may be removably disposed with the LP-RCD bearing assembly with a seal support member threadedly attached with the LP-RCD bearing assembly. The seal support member may be locked in position with a seal locking ring removably attached with threads with the LP-RCD bearing assembly over the seal support member. Spaced apart accumulators may be disposed radially outward of the bearings in the bearing assembly to provide self lubrication to the bearings.
Abstract:
A method for drilling a wellbore includes drilling the wellbore by advancing the tubular string longitudinally into the wellbore; stopping drilling by holding the tubular string longitudinally stationary; adding a tubular joint or stand of joints to the tubular string while injecting drilling fluid into a side port of the tubular string, rotating the tubular string, and holding the tubular string longitudinally stationary; and resuming drilling of the wellbore after adding the joint or stand.
Abstract:
An acoustic control system wirelessly operates a subsea latching assembly or other subsea device, such as an active seal. The acoustic control system may control a subsea first accumulator to release its stored hydraulic fluid to operate the latch assembly or other subsea device, such as an active seal. An RCD or other oilfield device may be unlatched or latched with the latching assembly. The acoustic control system may have a surface control unit, a subsea control unit, and two or more acoustic signal devices. A valve may allow switching from an umbilical line system to the acoustic control system accumulator.
Abstract:
In one embodiment, a method for drilling a wellbore includes injecting drilling fluid into a top of a tubular string disposed in the wellbore at a first flow rate. The tubular string includes: a drill bit tubular joints connected together, a longitudinal bore therethrough, and a port through a wall thereof. The drilling fluid exits the drill bit and carries cuttings from the drill bit. The cuttings and drilling fluid (returns) flow to the surface via an annulus defined between the tubular string and the wellbore. The method further includes rotating the drill bit while injecting the drilling fluid; remotely removing a plug from the port, thereby opening the port; and injecting drilling fluid into the port at a second flow rate while adding a tubular joint or stand of joints to the tubular string. The injection of drilling fluid is continuously maintained between drilling and adding the joint or stand to the drill string. The method further includes remotely installing a plug into the port. A clamp specially adapted to carry out this method is also disclosed.
Abstract:
A method and apparatus for holding and turning a tubular and string of tubulars, such as casing, for make-up and drilling with the tubulars are disclosed. The apparatus generally includes a spear and a clamping head, both of which are mounted to a top drive. The spear and the clamping head can be engaged to transmit torque therebetween from the top drive. In addition, an aspect of the invention provides variable height wickers positioned on slips to enable use of the slips with variable inner diameter (ID) and weight casing without deformation or rupture of the casing. Still further, a casing collar is also provided to provide reinforcement to the casing in the area of slip contact with the casing ID.
Abstract:
A mill for use in a wellbore includes a tubular housing having a bore therethrough and a plurality of eccentrically arranged pockets formed in a wall thereof and an arm disposed in each pocket. Each arm has a body portion and a blade portion extending from an outer surface of the body portion and is movable between an extended position and a retracted position. The mill further includes cutters disposed along each blade portion and a block disposed in each pocket and connected to the housing. Each block has a guide engaged with a mating guide of the respective body portion and an inner passage for providing fluid communication between the housing bore and the respective pocket. The mill further includes an actuator for extending the arms.
Abstract:
A flow sub (100) for use with a drill string includes: a tubular housing (105) having a longitudinal bore formed therethrough and a flow port formed through a wall thereof; a bore valve (110) operable between an open position and a closed position, wherein the bore valve allows free passage through the bore in the open position and isolates an upper portion of the bore from a lower portion of the bore in the closed position; and a sleeve (121) disposed in the housing and movable between an open position where the flow port is exposed to the bore and a closed position where a wall of the sleeve is disposed between the flow port and the bore; and a bore valve actuator operably coupling the sleeve and the bore valve such that opening the sleeve closes the bore valve and closing the sleeve opens the bore valve.
Abstract:
Rotating control device related oilfield pressure control is accomplished by upper (26a) and lower (26b) seal members configured to seal around a tubular (40), a chamber (44) defined between the upper and lower seal members; and wherein fluid enters and/or exits the chamber via some device or structure (60, 70). Such a device or structure could be a relief valve (60), a first accumulator (70), a pressure control valve, an orifice, and/or a void space in a seal member in a location which contacts the tubular.