Abstract:
A latch assembly, and methods of using the latch assembly, for use with a bottom hole assembly (BHA) and a tubular, are provided. In one embodiment, the latch assembly is disposable within the tubular, configured to be rotationally and axially coupled to the tubular. In one aspect of the embodiment, latch assembly is configured to be released from the tubular by applying a tensile force to the latch assembly. The latch the latch assembly may comprise: one or more sleds disposed within one or more respective slots formed along at least a portion of a locking mandrel; and one or more retractable axial drag blocks configured to engage a matching axial profile disposed in the tubular, wherein each axial drag block is coupled to the respective sled with one or more biasing members; and the locking mandrel actuatable between a first position and a second position and preventing retraction of the axial drag blocks when actuated to the second position. The latch assembly may also comprise a drag block body having a bore therethorugh; and one or more retractable torsional drag blocks configured to engage a matching torsional profile disposed in the tubular, wherein each torsional drag block is coupled to the drag block body with a biasing member.
Abstract:
The present invention relates methods and apparatus for lining a wellbore. In one aspect, a drilling assembly having an earth removal member and a wellbore lining conduit is manipulated to advance into the earth. The drilling assembly includes a first fluid flow path and a second fluid flow path. Fluid is flowed through the first fluid flow path, and at least a portion of which may return through the second fluid flow path. In one embodiment, the drilling assembly is provided with a third fluid flow path. After drilling has been completed, wellbore lining conduit may be cemented in the wellbore.
Abstract:
In one embodiment, a top drive system for drilling with casing is provided with an access tool to retrieve a downhole tool. The top drive system for drilling with casing comprises a top drive; a top drive adapter for gripping the casing, the top drive adapter operatively coupled to the top drive; and an access tool coupled to the top drive and adapted for accessing a fluid passage of the top drive system. In another embodiment, a method for retrieving a downhole tool through a tubular coupled to a top drive adapter of a top drive system is provided. The method comprises coupling an access tool to the top drive system, the access tool adapted to provide access to a fluid path in the top drive system and inserting a conveying member into the fluid path through the access tool.
Abstract:
The present invention relates methods and apparatus for lining a wellbore. In one aspect, a drilling assembly having an earth removal member and a wellbore lining conduit is manipulated to advance into the earth. The drilling assembly includes a first fluid flow path and a second fluid flow path. Fluid is flowed through the first fluid flow path, and at least a portion of which may return through the second fluid flow path. In one embodiment, the drilling assembly is provided with a third fluid flow path. After drilling has been completed, wellbore lining conduit may be cemented in the wellbore.
Abstract:
A latch assembly, and methods of using the latch assembly, for use with a bottom hole assembly (BHA) and a tubular, are provided. In one embodiment, the latch assembly is disposable within the tubular, configured to be rotationally and axially coupled to the tubular. In one aspect of the embodiment, latch assembly is configured to be released from the tubular by applying a tensile force to the latch assembly. The latch the latch assembly may comprise: one or more sleds disposed within one or more respective slots formed along at least a portion of a locking mandrel; and one or more retractable axial drag blocks configured to engage a matching axial profile disposed in the tubular, wherein each axial drag block is coupled to the respective sled with one or more biasing members; and the locking mandrel actuatable between a first position and a second position and preventing retraction of the axial drag blocks when actuated to the second position. The latch assembly may also comprise a drag block body having a bore therethorugh; and one or more retractable torsional drag blocks configured to engage a matching torsional profile disposed in the tubular, wherein each torsional drag block is coupled to the drag block body with a biasing member.
Abstract:
A latch assembly, and methods of using the latch assembly, for use with a bottom hole assembly (BHA) and a tubular, are provided. In one embodiment, t he latch assembly is disposable within the tubular, configured to be rotational ly and axially coupled to the tubular. In one aspect of the embodiment, latch assembly is configured to be released from the tubular by applying a tensile force to the latch assembly. The latch the latch assembly may comprise: one or more sleds disposed within one or more respective slots formed along at leas t a portion of a locking mandrel; and one or more retractable axial drag block s configured to engage a matching axial profile disposed in the tubular, where in each axial drag block is coupled to the respective sled with one or more biasing members; and the locking mandrel actuatable between a first position and a second position and preventing retraction of the axial drag blocks whe n actuated to the second position. The latch assembly may also comprise a drag block body having a bore therethorugh; and one or more retractable torsional drag blocks configured to engage a matching torsional profile disposed in th e tubular, wherein each torsional drag block is coupled to the drag block body with a biasing member.
Abstract:
In a method of cementing, a ball 1122 is placed into the drill string 1010, passing through bore 1124 of float sub 1016 into spherical manifold 1116 of drill bit 1012 to deform and seal against spherical seat 1116 and block passage of drilling mud through drill bit passages 1028. A resultant rise in pressure causes membrane 1133 to rupture, allowing cement to pass through the cement aperture 1202 and up into annulus 1024 to cement the drill string 1010 in place in the borehole 1020.