Abstract:
It is a challenge to reduce unburned hydrocarbon emissions for gaseous fuelled engines, especially at low engine load conditions, to meet demanding emission regulation targets. A method for reducing unburned hydrocarbon emissions in a lean- burn internal combustion engine that is fuelled with a gaseous fuel comprises adjusting the timing for closing of an intake valve as a function of engine operating conditions by one of advancing timing for closing of the intake valve and closing the intake valve earlier during an intake stroke; and retarding timing for closing of the intake valve and closing the intake valve later during a compression stroke. The volumetric efficiency of the internal combustion engine is reduced and unburned hydrocarbon emissions are maintained below a predetermined level.
Abstract:
In a gaseous-fuelled stoichiometric compression ignition internal combustion engine, a pilot fuel is injected directly into the combustion chamber to help initiate a multi-point ignition. The engine provides performance improvements approaching those of high pressure direct injection engines but with less complexity because the gaseous fuel is introduced into the intake air subsystem at relatively low pressure and as a result of the stoichiometric combustion, the low oxygen content in the combustion products exiting the combustion chamber allows the use of a three-way catalyst instead of other after treatment arrangements normally associated with conventional compression ignition engines that require the addition of a reductant.
Abstract:
A method for operating a gaseous-fuelled internal combustion engine by directly injecting the gaseous fuel into the combustion chamber is disclosed wherein the gaseous fuel is injected at injection pressures higher than 300 bar and the pressure ratio between the gaseous fuel injection pressure and the peak cylinder pressure is between 1.6: 1 and 3: 1, and preferably between 2.5: 1 to 2.8: 1. The injection pressure is selected to be between 300 and 540 bar and preferably between 300 bar and 440 bar. The injection pressure can be selected based on a preferred range for the pressure ratio.
Abstract:
Emission targets, such as NOx levels, for gaseous fuelled internal combustion engines that burn a gaseous fuel in a diffusion combustion mode are increasingly more challenging to achieve. A method of fuel injection for an internal combustion engine fuelled with a gaseous fuel comprises introducing a first amount of pilot fuel in a first stage of fuel injection; introducing a first amount of main fuel (the gaseous fuel) in a second stage of fuel injection; and introducing a second amount of main fuel in a third stage of fuel injection. The first and second amounts of main fuel contribute to load and speed demand of the internal combustion engine. Engine maps calibrated for different engine performance can be employed in different regions of the load and speed range of the engine. The engine maps are blended when the engine transitions between two regions; and momentary excursions into different regions do not change the engine calibration.
Abstract:
It is a challenge to reduce unburned hydrocarbon emissions for gaseous fuelled engines, especially at low engine load conditions, to meet demanding emission regulation targets. A method for reducing unburned hydrocarbon emissions in a lean-burn internal combustion engine that is fuelled with a gaseous fuel comprises adjusting the timing for closing of an intake valve as a function of engine operating conditions by one of advancing timing for closing of the intake valve and closing the intake valve earlier during an intake stroke; and retarding timing for closing of the intake valve and closing the intake valve later during a compression stroke. The volumetric efficiency of the internal combustion engine is reduced and unburned hydrocarbon emissions are maintained below a predetermined level.
Abstract:
In a gaseous-fuelled stoichiometric compression ignition internal combustion engine, a pilot fuel is injected directly into the combustion chamber to help initiate a multi-point ignition. The engine provides performance improvements approaching those of high pressure direct injection engines but with less complexity because the gaseous fuel is introduced into the intake air subsystem at relatively low pressure and as a result of the stoichiometric combustion, the low oxygen content in the combustion products exiting the combustion chamber allows the use of a three-way catalyst instead of other after treatment arrangements normally associated with conventional compression ignition engines that require the addition of a reductant.
Abstract:
A method for operating a gaseous-fuelled internal combustion engine by directly injecting the gaseous fuel into the combustion chamber is disclosed wherein the gaseous fuel is injected at injection pressures higher than 300 bar and the pressure ratio between the gaseous fuel injection pressure and the peak cylinder pressure is between 1.6:1 and 3:1, and preferably between 2.5:1 to 2.8:1. The injection pressure is selected to be between 300 and 540 bar and preferably between 300 bar and 440 bar. The injection pressure can be selected based on a preferred range for the pressure ratio.
Abstract:
A method for operating a gaseous-fuelled internal combustion engine by directly injecting the gaseous fuel into the combustion chamber is disclosed wherein the gaseous fuel is injected at injection pressures higher than 300 bar and the pressure ratio between the gaseous fuel injection pressure and the peak cylinder pressure is between 1.6: 1 and 3: 1, and preferably between 2.5: 1 to 2.8: 1. The injection pressure is selected to be between 300 and 540 bar and preferably between 300 bar and 440 bar. The injection pressure can be selected based on a preferred range for the pressure ratio.
Abstract:
Emission targets, such as NOx levels, for gaseous fuelled internal combustion engines that burn a gaseous fuel in a diffusion combustion mode are increasingly more challenging to achieve. A method of fuel injection for an internal combustion engine fuelled with a gaseous fuel comprises introducing a first amount of pilot fuel in a first stage of fuel injection; introducing a first amount of main fuel (the gaseous fuel) in a second stage of fuel injection; and introducing a second amount of main fuel in a third stage of fuel injection. The first and second amounts of main fuel contribute to load and speed demand of the internal combustion engine. Engine maps calibrated for different engine performance can be employed in different regions of the load and speed range of the engine. The engine maps are blended when the engine transitions between two regions; and momentary excursions into different regions do not change the engine calibration.