Abstract:
An air-laid unitary absorbent layer composed of crosslinked cellulosic fibers and a binder is disclosed. In a preferred embodiment, the binder is a bicomponent binding fiber. In combination with one or more other layers in an absorbent article, the unitary absorbent layer can rapidly acquire, distribute, temporarily store, and then release the acquired liquid to other liquid retention layers. A method for forming the unitary absorbent layer is also disclosed.
Abstract:
A unitary stratified composite composed of a first stratum and a second stratum integrally connected by a transition zone is disclosed. The first stratum serves as a liquid acquisition stratum that rapidly acquires and then transfers liquid to the second stratum. The second stratum serves to withdraw liquid from the first stratum and further serves as a temporary storage stratum. Methods for forming the unitary stratified composite are also disclosed.
Abstract:
A unitary absorbent layer composed of cross-linked cellulosic fibers and a binder is disclosed. In a preferred embodiment, the binder is a bicomponent binding fiber. In combination with one or more other layers in an absorbent article, the unitary absorbent layer can rapidly acquire, distribute, temporarily store, and then release the acquired liquid to other liquid retention layers. Methods for forming the unitary absorbent layer are also disclosed.
Abstract:
A unitary stratified composite composed of a first stratum and a second stratum integrally connected by a transition zone is disclosed. The first stratum serves as a liquid acquisition stratum that rapidly acquires and then transfers liquid to the second stratum. The second stratum serves to withdraw liquid from the first stratum and further serves as a temporary storage stratum. Methods for forming the unitary stratified composite are also disclosed.
Abstract:
A crosslinkable cellulosic fibrous product that includes cellulosic fibers and a crosslinking agent is disclosed. The crosslinkable cellulosic fibrous product can be formed as a web or sheet that has structural integrity and sheet strength sufficient to permit the fibrous web to be rolled, transported, and used in rolled form in subsequent processes. The crosslinkable fibrous product can be converted into a crosslinked fibrous product by subjecting the product to conditions sufficient to effect intrafiber crosslinking. Alternatively, the web can be fiberized and the resulting individual crosslinkable fibers combined with other fibers and/or other materials to provide a fibrous web containing crosslinkable cellulosic fibers. Subjecting such a web to crosslinking conditions provides a fibrous web that includes, in addition to other fibers or materials, crosslinked cellulosic fibers.
Abstract:
A densified web of cellulose fibers has a high absorbent capacity and good wet strength. The web is produced by combining cellulose fibers with a bonding agent, activating the bonding agent, allowing it to contact the cellulose fibers, and thereafter deactivating the bonding agent. The web is thereafter compressed in a cooled state to form a densified web. The web exhibits an absorbent capacity superior to that of prior densified and bonded webs.