Abstract:
A rechargeable lithium-ion (Li-ion) battery employs a solvent-less, low temperature approach to battery manufacturing that forms charge material from kinetic energy of high velocity particles impelled into aggregation such that bombardment of the particles against other particles in the aggregation forms a charge conveying structure. High velocity bombardment from a carrier gas nozzle accumulates an active charge material (active material) and metal binder in a layered arrangement for the finished battery. Preparation of the particles, such as by ball milling or freeze drying, arranges particle agglomerations. The particle agglomerations, when impelled against other agglomerations or a current collector, forms a layer of cathodic, anodic or electrolytic battery material. The metallic binder conveys charge for mitigating or eliminating a need for planar current collector underlying the sprayed layer. The resulting layers are suitable for battery operation, and are manufactured in an absence of any solvent drying or disposal.
Abstract:
A molten metal inclusion test apparatus includes a spectroscopic appliance for gathering data indicative of the contents of a quantity of molten metal. Laser induced emissions provide spectral data based on the elements present in the melt. Analysis of a series of samplings, or "shots" of laser induced emissions indicates a presence of elements above a background or expected level. These elements appear as spikes in a graphical rendering of the spectral data, defined by a wavelength of the detected element. Correlation of the elements detected in the same shot indicates a composition of the inclusion, typically a particle of an extraneous compound in the melt. Such spectral analysis provides immediate feedback about melt quality, allowing corrective measures to be taken prior to casting.
Abstract:
Preferred embodiments of the present invention include methods that allow for casting alloys, and preferentially casting wrought alloys to circumvent problems such as, for example, hot tearing. Preferred embodiments of the present invention provide for alloys having predominantly spherical primary α-aluminum grains in their microstucture (i.e., substantially free of dendrites ) formed by mixing two liquids of differing compositions the are held at predetermine temperatures, such that when mixed they produce a predetermined alloy composition at a predetermined temperature that is inclined to solidify with a predominantly spherical grain structure that minimizes the alloy’s tendency towards hot tearing.
Abstract:
Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.
Abstract:
A pulsed thermography defect detection apparatus including active and passive infrared (IR) thermography for non-destructive testing (NDT) of powdermetallic (P/M) components for on-line and off-line inspection.
Abstract:
The present invention relates to systems of methods of detecting and measuring inclusions in liquid metals. More particularly, non-metallic inclusions having a conductivity level different from the liquid metal melt are forced to migrate and are collected on a measurement surface using electromagnetic Lorentz forces. The inclusions and their concentrations are detected at the measurement surface using either an electrostatic detection system or an optical detection system.