Abstract:
A hydrogen separation membrane employs dense liquid metal separator deposited on a support structure for providing a membrane film allowing passage of hydrogen to be used in industrial processes and consumer applications benefiting from pure hydrogen. A support structure such as silicon carbide is non-reactive with the molten metal, thus withstanding the high temperatures associated with hydrogen producing processes. The liquid metal "wets", or adheres/covers the support structure to form continuous membrane for passing only hydrogen and resisting breakdown leading to discontinuity in the membrane surface. The molten (liquid) metal membrane is "sandwiched" between porous and inert ceramic supports to form a continuous thin film. Molecular hydrogen dissociates on the liquid metal membrane surface when exposed to a hydrogen gas mixture. The resulting hydrogen atoms dissolve into and diffuse across liquid metal film to arrive at the opposite surface, where they reassociate and desorb as pure hydrogen gas.
Abstract:
An electrochemical device comprises an electrochemical reactor that includes a single or multiple electrochemical cells and a galvanostat, a gas source and a fuel cell system. Each of the electrochemical cells includes an anode compartment and a cathode compartment. The gas source is in fluid communication with the anode or cathode compai ment of each of the electrochemical cells, including at least two components that are selectively reactive relative to each other. The selectivity of the two components of the gas source is dependent upon an electrical potential between an anode of the anode compartment and a cathode of the cathode compartment, whereby a constant current between the anode and cathode causes the electrical potential to oscillate autonomously while the gas components are directed through the anode or cathode compartment. The oscillation in potential causes autonomous oscillation of selective reaction of the gas components.