Abstract:
A process is disclosed for producing metal-based, high-aspect-ratio microscale structures (HARMs), for example microchannels in a heat exchanger. The preferred manufacturing method operates in a continuous mode, and employs low-temperature rolling of metals. A process is disclosed for bonding metal microchannel sheets or plates to flat metal sheets or plates to form single-, double-, and multiple-layered microchannel structures. The process can operate at much lower temperatures than prior methods of compression microscale molding of metals, at room temperature or even lower.
Abstract:
An inexpensive method of rapidly fabricating reactive metal (Zn, Al, Al-alloy, etc.) microscale structures including high-aspect-ratio microscale structures is disclosed. A high precision process uses conformal bond inhibitor coating and high temperature compression molding techniques to produce high quality, high aspect ratio metal structures. In one embodiment, following fabrication of an initial metallic microscale mold insert, an adhesion-promoting metal precursor layer and a ceramic bond inhibitor coating are conformally deposited onto the microscale mold insert. The microscale mold insert and a preselected reactive metal are then heated to an optimum temperature and compressed together. The mold insert is then extracted from the molded metal to produce a reverse image of the mold insert.
Abstract:
Compression molding of metals is used to make microchannel heat exchangers. Heat transfer can be improved by employing controlled microchannel surface roughness. Flux-free bonding is achieved using a eutectic thin-film intermediate layer. Seals are leak-tight, mechanically strong, and uniform across multiple contact areas. The metal heat exchangers may be mass-produced inexpensively, and are useful for applications including the cooling of computer chips and other high-power electronic devices, air conditioning, refrigeration, condenser plates, radiators, fuel cell heat management, and instant water heating.
Abstract:
Compression molding of metals is used to make microchannel heat exchangers. Heat transfer can be improved by employing controlled microchannel surface roughness. Flux-free bonding is achieved using a eutectic thin-film intermediate layer. Seals are leak-tight, mechanically strong, and uniform across multiple contact areas. The metal heat exchangers may be mass-produced inexpensively, and are useful for applications including the cooling of computer chips and other high-power electronic devices, air conditioning, refrigeration, condenser plates, radiators, fuel cell heat management, and instant water heating.
Abstract:
Compression molding of metals is used to make microchannel heat exchangers. Heat transfer can be improved by employing controlled microchannel surface roughness. Flux-free bonding is achieved using a eutectic thin-film intermediate layer. Seals are leak-tight, mechanically strong, and uniform across multiple contact areas. The metal heat exchangers may be mass-produced inexpensively, and are useful for applications including the cooling of computer chips and other high-power electronic devices, air conditioning, refrigeration, condenser plates, radiators, fuel cell heat management, and instant water heating.
Abstract:
A process is disclosed for producing metal-based, high-aspect-ratio microscale structures (HARMs), for example microchannels in a heat exchanger. The preferred manufacturing method operates in a continuous mode, and employs low-temperature rolling of metals. A process is disclosed for bonding metal microchannel sheets or plates to flat metal sheets or plates to form single-, double-, and multiple-layered microchannel structures. The process can operate at much lower temperatures than prior methods of compression microscale molding of metals, at room temperature or even lower.