Abstract:
An apparatus and method for DC offset compensation. An amplifier receives an input signal (AIN) and provides an amplified output signal (SOUT) and a feedback path provides DC offset compensation. The feedback path comprises at least one voltage controlled oscillator (VCO) and a counter. The VCO provides, over time, a first VCO output signal based on said amplified output signal and a second VCO output signal based on a reference signal (VREF). The counter generates first pulse counts based upon the first VCO output signal and second pulse counts based upon the second VCO output signal and provides a compensation signal based on a comparison of the first and second pulse counts. One voltage controlled oscillator may sequentially receive a signal based on said amplifier output signal and the reference signal from a multiplexer so as to sequentially produce the first and second VCO output signals.
Abstract:
The application relates to digital to analogue conversion circuits having dynamic gain control. A digital variable gain element (102) may apply gain to an input digital signal (DIN) upstream of a DAC (101) to make better use of the input range of the DAC and an analogue variable gain element (103) applies a compensating analogue gain. Again controller (201) has a gain allocation module (204) for controlling the allocation of gain between said digital and analogue variable gain elements in response to changes in a signal level of the input digital audio signal. In the present invention the gain allocation module is operable in first and second modes of operation where the response to reductions in signal level is slower in the first mode than in the second mode of operation. A low-level detector (202) monitors the input digital audio signal so as to detect a low-level part of the signal and the gain controller changes from the first mode to the second mode following detection of a low-level part of the input digital audio signal. The response of the gain allocation module in the second mode is preferably fast enough such that the digital gain can be changed to a target setting suitable for the low-level part of the signal before it is received at the digital gain element.
Abstract:
A clock generator receives first and second clock signals, and input representing a desired frequency ratio. A comparison is made between frequencies of an output clock signal and the first clock signal, and a first error signal represents the difference between the desired frequency ratio and this comparison result. The first error signal is filtered. A comparison is made between frequencies of the output clock signal and the second clock signal, and a second error signal represents the difference between the filtered first error signal and this comparison result. The second error signal is filtered. A numerically controlled oscillator receives the filtered second error signal and generates an output clock signal. As a result, the output clock signal has the jitter characteristics of the first input clock signal over a useful range of jitter frequencies and the frequency accuracy of the second input clock signal.
Abstract:
A speech recognition system comprises: an input, for receiving an input signal from at least one microphone; a first buffer, for storing the input signal; a noise reduction block, for receiving the input signal and generating a noise reduced input signal; a speech recognition engine, for receiving either the input signal output from the first buffer or the noise reduced input signal from the noise reduction block; and a selection circuit for directing either the input signal output from the first buffer or the noise reduced input signal from the noise reduction block to the speech recognition engine.
Abstract:
A clock generator receives first and second clock signals, and input representing a desired frequency ratio. A comparison is made between frequencies of an output clock signal and the first clock signal, and a first error signal represents the difference between the desired frequency ratio and this comparison result. The first error signal is filtered. A comparison is made between frequencies of the output clock signal and the second clock signal, and a second error signal represents the difference between the filtered first error signal and this comparison result. The second error signal is filtered. A numerically controlled oscillator receives the filtered second error signal and generates an output clock signal. As a result, the output clock signal has the jitter characteristics of the first input clock signal over a useful range of jitter frequencies and the frequency accuracy of the second input clock signal.
Abstract:
Methods and apparatus for Class-D amplifier circuits with D.C. offset control/correction. A Class-D amplifier is described having an output stage, such as a full H-bridge or half bridge, with a plurality of switches operable to provide a plurality of output states comprising at least a positive output state and a negative output state. Control circuitry is configured to receive a first signal based on the input signal and produce a digital control signal, which is used to determine the switch state of the output stage. A digital integrator is configured to receive a feedback signal indicative of the output state of the output stage and to sample the feedback signal at a sample rate and produce an integrated output signal (INT, IVC) indicating the difference in number of instances of the positive output state and the negative output state. Correction circuitry subtracts the integrated output signal from the input signal to produce a D.C. offset corrected signal.
Abstract:
Methods and apparatus for Class-D amplifier circuits with improved power efficiency. The circuit has an output stage with at least first and second switches and a modulator that receives an input signal to be amplified, SIN, and a first clock signal fSW. The modulator controls the duty cycles of the first and second switches, within a switching cycle based on the input signal, wherein the switching cycle has a switching frequency based on the first clock signal. A frequency controller controls the frequency of the first clock signal in response to an indication of the amplitude of the input signal so as to provide a first switching frequency at a first input signal amplitude and a second, lower, switching frequency at a second, lower, input signal amplitude. A lower switching frequency can be tolerated at low signal amplitudes and varying the switching frequency in this way thus maintains stability whilst reducing switching power losses.
Abstract:
An amplifier circuit, comprising: an input, for receiving an input signal to be amplified; a power amplifier, for amplifying the input signal; a switched power supply, having a switching frequency, for providing at least one supply voltage to the power amplifier; and a dither block, for dithering the switching frequency of the switched power supply. The dither block is controlled based on the input signal. Another aspect of the invention involves using first and second switches, each having different capacitances and resistances, and using the first or second switch depending on the input signal or volume signal. Another aspect of the invention involves controlling a bias signal provided to one or more components in the signal path based on the input signal or volume signal.
Abstract:
Methods and apparatus for Class-D amplifier circuits with D.C. offset control/correction. A Class-D amplifier is described having an output stage, such as a full H-bridge or half bridge, with a plurality of switches operable to provide a plurality of output states comprising at least a positive output state and a negative output state. Control circuitry is configured to receive a first signal based on the input signal and produce a digital control signal, which is used to determine the switch state of the output stage. A digital integrator is configured to receive a feedback signal indicative of the output state of the output stage and to sample the feedback signal at a sample rate and produce an integrated output signal (INT, IVC) indicating the difference in number of instances of the positive output state and the negative output state. Correction circuitry subtracts the integrated output signal from the input signal to produce a D.C. offset corrected signal.
Abstract:
An apparatus and method for regulating analogue-to-digital converters. First and second input signals are received at controlled oscillator circuitry which generates respective first and second pulse streams with pulse rates based on the relevant input signal. Difference circuitry determines the difference in number of pulses of the first and second pulse streams and outputs a first digital signal. Circuitry also determines a signal independent value based on the number of pulses of the first and/or second pulse streams. In one embodiment this value is the sum or average of the number of pulses of the first and second pulse streams. This value can be used to calibrate for any variation in transfer characteristic of the oscillator circuitry. In one embodiment this value is compared to a reference value and a regulation signal passed to control circuitry to regulate the operation of the oscillation circuitry.