Abstract:
A volumetric display system includes a volumetric display stage, a plurality of acoustical actuators, and a control system. A plurality of voxel particles are re-arrangeable within the volumetric display stage via acoustic pressure waves to assume controllable positions in three-dimensional ("3D") space to collectively assume a unified 3D shape. The plurality of acoustical actuators are disposed about the volumetric display stage to emit the acoustic pressure waves and establish a 3D sound field pattern within the volumetric display stage for physically manipulating the voxel particles. A control system is coupled to the acoustical actuators to manipulate the 3D sound field pattern. The control system includes a volumetric image module configured to receive 3D image data describing the unified 3D shape and compute the 3D sound field pattern for arranging the voxel particles into the unified 3D shape.
Abstract:
The present disclosure provides methods operable in a balloon network. The method can include determining that a balloon is at a location associated with a legally-defined geographic area. An area profile of the legally-defined geographic area may identify geographically-restricted data that must not be removed from the legally-defined geographic area. The method can also include determining that the balloon contains at least some of the geographically-restricted data. The method can also include determining that the balloon is likely to move out of the legally-defined geographic area. The method can also include removing the geographically-restricted data from the memory of the balloon.
Abstract:
In one aspect, there is provided a marine sensor platform that includes: a line having a plurality of slots that are spaced apart on the line, a plurality of sensor nodes, each sensor node configured to couple to each of the slots on the line, and each sensor node including at least one sensor, a power source coupled to the plurality of sensor nodes and configured to supply power to the plurality of sensor nodes on the line, and a controller coupled to the power source and the plurality of sensor nodes on the line, wherein the controller is configured to identify a type of the at least one sensor included in each of the sensor nodes when each of the sensor nodes is coupled to the respective slot on the line.
Abstract:
The optical tracking module (102, 302) includes an optical phased array (OP A) (112, 312), an analog drive (116, 316), an integrated photodetector (118, 318), and one or more processors (114, 314). The OPA includes a plurality of array elements, and a plurality of phase shifters (113, 313). The analog drive is configured to adjust the plurality of phase shifters. The integrated photodetector is configured to receive light from the OPA. The one or more processors is configured to extract signal information of an incoming beam via the OPA, and control an outgoing beam using the analog drive based on the signal information. The OPA, the analog drive, the integrated photodetector and the one or more processors are in an integrated circuit.
Abstract:
Example embodiments may facilitate altitude control by a balloon in a balloon network. An example method involves: (a) causing a balloon to operate in a first mode, wherein the balloon comprises an envelope, a high-pressure storage chamber, and a solar power system, (b) while the balloon is operating in the first mode: (i) operating the solar power system to generate power for the balloon and (ii) using at least some of the power generated by the solar power system to move gas from the envelope to the high-pressure storage chamber such that the buoyancy of the balloon decreases; (c) causing the balloon to operate in a second mode; and while the balloon is operating in the second mode, moving gas from the high-pressure storage chamber to the envelope such that the buoyancy of the balloon increases.
Abstract:
The positions of balloons in a communication network of balloons, such as a mesh network of high-altitude balloons, may be adjusted relative to one another in order to try to maintain a desired network topology. In one approach, the position of each balloon may be adjusted relative to one or more neighbor balloons. For example, the locations of a target balloon and one or more neighbor balloons may be determined. A desired movement of the target balloon may then be determined based on the locations of the one or more neighbor balloons relative to the location of the target balloon. The target balloon may be controlled based on the desired movement. In some embodiments, the altitude of the target balloon may be controlled in order to expose the target balloon to ambient winds that are capable of producing the desired movement of the target balloon.