Abstract:
Disclosed is a total organic carbon (TOC) measurement apparatus capable of facilitating reduction in size of the apparatus and achieving enhanced measurement accuracy. The TOC measurement apparatus includes an organics oxidation unit, a carbon-dioxide separation unit and a conductivity measurement unit, which are integrally formed by laminating a plurality of plates to define therebetween and incorporate therein an oxidizing flow passage, an aqueous-sample flow passage, a gas permeable membrane, a measurement-water flow passage and a conductivity measuring electrode. The TOC measurement apparatus is designed such that carbon oxide in an aqueous sample is transferred from the aqueous-sample flow passage to the measurement-water flow passage through the gas permeable membrane, and a conductivity of measurement water which contains the carbon oxide and flows through a flow passage facing the conductivity measuring electrode is determined and converted to a TOC content.
Abstract:
Disclosed is a biodevice which has a porous membrane (8) and flow paths (10) and (12) formed therein. In a preferred embodiment, the flow path (10) and the flow path (12) are opposed to each other with the porous membrane (8) being interposed between them. The flow path (10) serves as a first reaction chamber through which a first solution is allowed to pass so as to be brought into contact with one of the surfaces of the porous membrane (8). The flow path (12) serves as a second reaction chamber through which a second solution is allowed to pass so as to be brought into contact with the other surface of the porous membrane (8). In the flow path (10), first cells are immobilized on the porous membrane (8). In the flow path (12), second cells are immobilized on the porous membrane (8).
Abstract:
A total organic carbon measuring instrument including a measuring unit composed of, integrated together, organic substance oxidation part and carbon dioxide separation part and conductivity measuring part, control unit and data processing unit. In order to enhance the accuracy of conductivity measurement, the control unit is constructed so as to stop feeding of a sample water at the time of oxidation of organic substance and carry out feeding of the sample water at the time of sample water moving to the organic substance oxidation decomposition part and carbon dioxide separation part. The data processing unit is constructed so as to measure the total organic carbon concentration on the basis of conductivity at the time of arriving of sample water irradiated with ultraviolet rays of which relative intensity is a given value or higher at the carbon dioxide separation part.
Abstract:
[PROBLEMS] To use in a carbon dioxide separation part a gas-permeable membrane capable of maintaining high-speed determination and to diminish the influence of interfering ingredients.[MEANS FOR SOLVING PROBLEMS] An apparatus which comprises: an organic-substance oxidation part in which organic substances contained in a sample water supplied are oxidized into carbon dioxide; a carbon dioxide separation part in which the carbon dioxide contained in the sample water treated with the organic-substance oxidation part is caused to permeate and come into a measurement water; and a conductivity measurement part in which the conductivity of the measurement water sent from the carbon dioxide separation part is measured. The carbon dioxide separation part comprises: a sample water channel in which the sample water treated with the organic-substance oxidation part flows; an intermediate water part in which an intermediate water having a higher pH value in a neutral region than the sample water flowing through the sample water channel is present; and a measurement water channel through which the measurement water comprising deionized water flows. The sample water channel is in contact with the intermediate water part through a gas-permeable membrane, and the intermediate water part is in contact with the measurement water channel through a gas-permeable membrane.
Abstract:
A gas exchange chip comprises substrates (1,2); two flow channels (3,4) formed in the substrates (1,2) and each having an inlet port and an outlet port; and multiple grooves (9) interlinking the flow channels (3,4). The grooves (9) have the size of their sectional area predetermined and have at least a part of the internal surface thereof rendered hydrophobic so as to permit the transfer of gas component while inhibiting any liquid passage. A sample water containing carbon dioxide is caused to flow through one of the flow channels (3) while pure water is caused to flow through the other flow channel (4) to thereby transfer the carbon dioxide contained in the sample water into the pure water.
Abstract:
A measuring cell is formed of base plates joined together. A passage groove is formed on a joining surface of one base plate. Through-holes for introducing and discharging a fluid sample are formed on the other base plate, and the joining surface is provided with an optically opaque Si film as slits. Further, the joining surfaces of the base plates and the inner surface of the passage groove are covered with SiO2 films. Thus, a measuring cell having a sufficiently small passage sectional area, a high air-tightness, a chemically stable measuring chamber, and a high measuring sensitivity can be obtained.
Abstract:
[PROBLEMS] To increase the rate of gas transfer in gas exchangers.[MEANS FOR SOLVING PROBLEMS] A gas exchange chip comprises substrates (1,2); two flow channels (3,4) formed in the substrates (1,2) and each having an inlet port and an outlet port; and multiple grooves (9) interlinking the flow channels (3,4). The grooves (9) have the size of their sectional area predetermined and have at least a part of the internal surface thereof rendered hydrophobic so as to permit the transfer of gas component while inhibiting any liquid passage. A sample water containing carbon dioxide is caused to flow through one of the flow channels (3) while pure water is caused to flow through the other flow channel (4) to thereby transfer the carbon dioxide contained in the sample water into the pure water.
Abstract:
Disclosed herein is a method for measuring total organic carbon without the influence of nitrogen components. The method for measuring total organic carbon includes the steps of: (1) adjusting the hydrogen ion concentration of sample water to between pH 4 and pH 6; (2) decomposing organic matter and nitrogen compounds contained in the sample water into carbon dioxide and nitrous acid, respectively, through oxidation and; (3) making the carbon dioxide permeate into measuring water via a gas-permeable part 5a; (4) and measuring the electric conductivity of the measuring water to determine the total organic carbon content of the sample water.
Abstract:
A total organic carbon measuring instrument including a measuring unit composed of, integrated together, organic substance oxidation part and carbon dioxide separation part and conductivity measuring part, control unit and data processing unit. In order to enhance the accuracy of conductivity measurement, the control unit is constructed so as to stop feeding of a sample water at the time of oxidation of organic substance and carry out feeding of the sample water at the time of sample water moving to the organic substance oxidation decomposition part and carbon dioxide separation part. The data processing unit is constructed so as to measure the total organic carbon concentration on the basis of conductivity at the time of arriving of sample water irradiated with ultraviolet rays of which relative intensity is a given value or higher at the carbon dioxide separation part.
Abstract:
An apparatus which comprises: an organic-substance oxidation part in which organic substances contained in a sample water supplied are oxidized into carbon dioxide; a carbon dioxide separation part in which the carbon dioxide contained in the sample water is caused to permeate and come into a measurement water; and a conductivity measurement part in which the conductivity of the measurement water is measured. The carbon dioxide separation part comprises: a sample water channel in which sample water flows; an intermediate water part in which intermediate water having a higher pH value in a neutral region than the sample water is present; and a measurement water channel through which the measurement water comprising deionized water flows. The sample water channel is in contact with the intermediate water part through a gas-permeable membrane, and the intermediate water part is in contact with the measurement water channel through a gas-permeable membrane.