Abstract:
EMP actuators are provided on a band intended for a wearable electronic device. Such a band may include (a) a flexible circuit having provided thereon an electrical interface to the wearable electronic device and conductive traces for distributing control signals received from the wearable electronic device over the electrical interface to predetermined locations on the flexible circuit; (b) electromechanical polymer (EMP) actuators each being mounted on one of the predetermined locations and each being connected by the conductive traces to receive one or more of the control signals; and (c) a protective covering over the flexible circuit and the EMP actuators.
Abstract:
A method and a circuit for stably driving an ultrasonic transducer by sweeping, as a first step of starting the oscillation, the oscillating frequency over a range wider than a PLL followable range, finding a resonant point to lock the oscillating frequency thereto, and effecting, as a second step, the PLL following operation starting from the above resonant point.
Abstract:
A supersonic transducer including means for detecting its vibrating speed and for changing the frequency of the energizing current in response thereto. This invention utilizes the property that when an electrostrictive vibrator is vibrated resonantly, its dynamic admittance varies depending upon the difference in its stress distribution. The electrostrictive vibrator is divided into portions of large and small stresses to cancel the applied brake currents. Simultaneously, a signal is derived that is proportional to the difference of the dynamic currents so as to provide an effective energization by detecting the resonant frequency of the vibrator in order to automatically adjust the applied frequency of the supersonic transducer.
Abstract:
A dielectric elastomer vibration system includes a dielectric elastomer vibrator with a dielectric elastomer layer and a pair of electrode layers, and a power supply device producing a potential difference across the electrode layers. The vibrator exhibits various modes or regions of relationship between potential difference and deformation induced by the potential difference: a high-response region in which a relatively large deformation is induced; a low-response region of lower-potential difference in which a relatively small deformation is induced; and a low-response region of higher-potential difference in which a relatively small deformation is induced or in which a break point of the dielectric elastomer layer is included. The power supply device produces the potential difference by applying across the electrode layers a vibration signal voltage, which is generated by combining an AC voltage with a bias DC voltage corresponding to a potential difference falling in the high-response region.
Abstract:
The present invention deals with an ultrasonic wave generating apparatus with voltage controlled filter, comprising a phase comparator which detects a shifted value from a predetermined phase difference between a driving voltage or a driving current of an ultrasonic transducer and a vibratory velocity signal, and a voltage-controlled band-pass filter which is controlled by the output of the phase comparator and which is provided in a feedback loop from the vibratory velocity signal to an input of a driving amplifier of the ultrasonic transducer, wherein the oscillating frequency is changed while following the resonant frequency of the ultrasonic transducer, so that stable operation is materialized without developing abnormal oscillation in subresonant frequencies and permitting very small following error.
Abstract:
EMP actuators are provided on a band intended for a wearable electronic device. Such a band may include (a) a flexible circuit having provided thereon an electrical interface to the wearable electronic device and conductive traces for distributing control signals received from the wearable electronic device over the electrical interface to predetermined locations on the flexible circuit; (b) electromechanical polymer (EMP) actuators each being mounted on one of the predetermined locations and each being connected by the conductive traces to receive one or more of the control signals; and (c) a protective covering over the flexible circuit and the EMP actuators.
Abstract:
In an ultrasonic transducer, frequency characteristics of phase detecting signal and frequency characteristics of transducer drive current are searched, resonant point with current dipping is found on the characteristics, the zero cross point corresponding to the current dipping is decided as the fundamental resonant point, and then PLL follow oscillation is performed. In such constitution, even if there exist many sub resonant frequency points near the fundamental resonant frequency, the PLL follow oscillation can be performed stably.
Abstract:
In an ultrasonic transducer, frequency characteristics of phase detecting signal and frequency characteristics of transducer drive current are searched, the resonant point with current dipping is found on the characteristics, the zero cross point corresponding to the current dipping is decided as the fundamental resonant point, and then a PLL following oscillation operation is performed. Under such condition even if there exist many sub resonant frequency points near the fundamental resonant frequency, the PLL follow oscillation can be performed stably.
Abstract:
A method for flating the phase characteristic of a differential detection signal in one higher and lower regions thereof relative to its resonance frequency by controlling a differential characteristic. A searching, over a range, which is wider than the width of the flat region, is accomplished prior to phase characteristic being effected thereby discriminating a fundamental resonance frequency. After this discrimination of the fundamental resonance frequency, automatic tracking is effected under stable corrected phase characteristics for the fundamental resonant frequency whereby high electro-mechanical conversion efficiency can be maintained.