Abstract:
To provide a floating flap gate that requires an auxiliary force of a counterweight or the like, and in which bending does not occur in a forward end portion of a door body, even in cases in which an installation site has a wide span. A floating flap gate 1 having a forward end portion 2c of a door body 2 that is configured to rotate around a base end portion serving as a fulcrum at a time of a rising water, so as to float upwards, and provided with an upper beam 2d attached to the forward end portion 2c of the door body 2 and a door body suspension member 3 contained within the upper beam 2d, and having two ends each being connected to one end of a wire rope 4. A counterweight 5 is connected to the other end side of the wire rope 4 as a pulling device. Bolts 6b are used as adjusting members interposed between the upper beam 2d and the door suspension member 3, and are inserted into bolt holes 6a provided on an upper surface of the upper beam 2d, so as to exert an opposing force to the tension of the wire rope 4 resulting from the weight of the counterweight 5 acting on the door body suspension member 3, the opposing force being applied uniformly to the upper beam 2d during ordinary use.
Abstract:
A pressure compensator is disclosed for a subsea electric installation, which includes a rigid bottle and a flexible bag placed in the rigid bottle, the pressure compensator including a first opening at a first end of the pressure compensator allowing fluid communication of an insulating medium arranged to intermediate space between the rigid bottle and the flexible bag, a second opening at a second end of the pressure compensator allowing fluid communication of seawater arranged within the flexible bag; and a bypass channel providing fluid communication between two points in the intermediate space of the pressure compensator.
Abstract:
A device (10) for collecting and temporarily storing fluids (16) escaping from an underwater source (12, 64) and having lower density than surrounding water includes a collector (18) placed over the underwater source for collecting the escaping fluids, a riser tube (20) for transferring the collected fluids together towards the surface; and a buoyant buffer reservoir (22) maintained submerged under the surface and having an open-bottom chamber (30) for storage of the fluids. The riser tube has flow restrictors has flow restrictors comprising choke disks (58, 58′) arranged in its interior for restricting the flow of the fluids. The flow restrictors are arranged along the length of the riser tube. The buffer reservoir has arranged in its chamber a separator vessel (32) for separating gas from the fluids. The riser tube opens into the interior of the separator for discharging the fluids.