Abstract:
An apparatus for monitoring a compressor includes a plurality of sensor inputs for receiving input regarding operating parameters of a compressor, at least one control action output for sending a control action to the compressor; and a control member communicated with the plurality of sensor inputs and the control action output, the control member being adapted to analyze input from the plurality of sensor inputs, to determine a control action based upon the input and to send the control action to the at least one control action output.
Abstract:
Disclosed is a compressor capable of having an enhanced performance by sufficiently supplying oil to components where sliding occurs not only in a high speed driving mode but also in a low speed driving mode. The compressor may increase an oil supply amount in a low speed driving mode, but may restrict an oil supply amount when a rotation speed of a driving motor reaches a predetermined speed in a constant or high speed driving mode, by setting the number of turns of an external groove to be approximately 1.75, and by forming an oil feeder in a conical shape.
Abstract:
Disclosed is a compressor capable of having an enhanced performance by sufficiently supplying oil to components where sliding occurs not only in a high speed driving mode but also in a low speed driving mode. The compressor may increase an oil supply amount in a low speed driving mode, but may restrict an oil supply amount when a rotation speed of a driving motor reaches a predetermined speed in a constant or high speed driving mode, by setting the number of turns of an external groove to be approximately 1.75, and by forming an oil feeder in a conical shape.
Abstract:
An apparatus for detecting an oil level and a method for controlling the same, an apparatus for detecting oil flow and a method for controlling the same, and a method for controlling oil return using the detected oil level and the detected oil flow are disclosed. The level of oil stored in a compressor is measured at two or more positions. The frequency comparison scheme using two electrodes can correctly detect the level of oil stored in the compressor, a refrigerant state, and the level of mixed oils, and can determine an internal state of the compressor and a normal or abnormal state of the oil return system, such that the oil return control can be actively controlled. The flow of oil in the oil return pipe is detected so as to determine whether the oil is normally supplied in real time, such that a malfunction of the compressor is prevented and a valve state can be checked. The level of oil stored in the compressor is adjusted not only using the oil level detection result but also the oil flow detection result, and the oil return operation can be controlled.
Abstract:
A method for monitoring an oil level of an oil-lubricated compressor, the method including: reading at least one oil level sensor, by which an oil level representing the compressor oil level is detected; checking compliance with at least one predetermined verification criterion for verification of the read-out oil level; and relaying an oil level signal if the read-out oil level complies with at least one relaying criterion according to whether the oil level reaches or falls below a predetermined oil level and with the at least one verification criterion.
Abstract:
Apparatus and method of exchanging lubricating oil from the crankcase of a compressor. A unit including a pretrimmed flexible tube is introduced into the oil fill plug opening. By opening an internal valve, the oil under pressure exits through an opening in the unit, which is connected to a drain hose. After emptying, a hand oil pump is connected to the unit and fresh oil introduced into the compressor crankcase.