Abstract:
The invention relates to a fluorometer having means (28, 31) for eliminating errors caused in the emitted light by variations in the distance to the object (29) being assayed. The arrangement preferably comprises a lens system (28) for collimating the emitted light and a delimiter (31) by means of which scattered rays are delimited out from the beam of light. The fluorometer preferably has a partly transparent mirror (27) through which excitation light is directed to the sample and via which emitted light from the sample is reflected. Thus a high sensitivity and, furthermore, as homogenous a measurement sensitivity distribution as possible within the vessel are achieved. Measuring can be carried out from either above or below. The invention is applicable for use especially when the fluorometer has simultaneously a plurality of samples.
Abstract:
A method of analysing a sample in the form of a droplet provided on a sample-receiving surface includes providing a light source and a detector in a housing, positioning said sample-receiving surface in or on the housing, and focussing an incident beam of light to a focal point in the vicinity of the sample. Light is detected from the sample resulting from an interaction with the sample, the sample-receiving surface, or the atmosphere surrounding the sample. At least one parameter of the detected light is measured, and the sample-receiving surface is translated relative to the housing such that the focal point is at a different region of the sample, the sample-receiving surface, or the atmosphere surrounding the sample. The step of measuring one or more parameters of the detected light is repeated following the translating step.
Abstract:
A mechanism and method for precisely arranging two or more optical elements, such as those incorporated into photoelastic modulators (PEMs), at a specific angular orientation. The method includes supporting one optical element in an annular mounting member that has an optic axis, and supporting other optical elements in other annular mounting members that have optic axes, and concentrically stacking together the two or more mounting members about a central axis in a manner such that one mounting member may be rotated relative to the others about the central axis and such that the optic axes of the mounting members define an optics angle, and rotating one mounting member relative to the others to define the specific angular orientation of the optical elements.
Abstract:
A method of protecting a sensor for use in an environment, includes providing a protective enclosure formed in a plurality of sections, at least a first section of the plurality of sections being movable relative to a second section of the plurality of sections so that the protective enclosure can be placed around at least a portion of the sensor; placing the first section adjacent the sensor while the first section and the second section are in an open state; and moving the second section to place the first section and the second section in a closed state in which the first section and the second section encompass the at least a portion of the sensor.