Abstract:
Apparatuses, systems, and methods for collecting, transporting, and purifying water using human energy from transport. A barrel shaped water impermeable container made of material comprising an ultraviolet (UV) light stabilized polymer that can be pushed or rolled. The container has one or more ports with removable filters to remove pre-sediment prior to transport and post-sediment after transport. A translucent water impermeable casing comprising an electrical box having at least two removable and replaceable UV lights, connected to copper coils with rotating magnets inside the coil generate power to light the ultraviolet lights and purify water in the container. Three or more removable proportionally spaced carbon fin cartridges rotate about a container closed end axis when the container is pushed or pulled to provide additional purification. Carbon fin cartridges can have a polylactic acid shell wrapped in liquid permeable mesh shell and evenly spaced holes packed with carbon.
Abstract:
A device and method for generating and guiding an electric discharge current including a first electrode, a second electrode and a material arranged between the first and second electrodes. The device and method involve the use of a laser for generating photons having energies equal to the energy between two excited electronic states of the material. The photons fill a region of the material from the first electrode through the material to the second electrode, ionizing the region of the material between the first and second electrodes. A voltage generating unit connected to the first and second electrodes applies a voltage between the first and second electrodes thereby generating the electric discharge which follows an ionized path in the region between the first and second electrodes. A solenoid is arranged around the housing so that the magnetic field which it produces is oriented approximately along the ionized path, thereby providing improved confinement of the electric discharge.
Abstract:
A wireless power transmission device is disclosed. The wireless power transmission device comprises a first coil and a second coil electromagnetically coupled to the first coil without contacting the first coil. A portion of one of the first coil and the second coil extends through a space defined by the other of the first coil and the second coil.
Abstract:
A device for generating and guiding an electric discharge current including a first electrode, second electrode and a material arranged between the first and second electrode. The device uses a laser for generating photons having energies equal to the energy between two excited electronic states of the material. The photons fill a region of the material from the first electrode through the material to the second electrode ionizing the region of the material between the first and second electrodes. A voltage generating unit connected to the first and second electrodes applies a voltage between the first and second electrodes thereby generating the electric discharge which follows an ionized path in the region between the first and second electrodes.
Abstract:
An impulse voltage generating device includes: an insulation cylinder; a DC power source positioned outside the insulation cylinder; capacitors arranged successively and connected to the DC power source in parallel, the capacitors being provided in a plurality of stages, the capacitors being accommodated in metal containers positioned outside the insulation cylinder; a discharging gap switch positioned in the insulation cylinder and provided between the stages; a blower structure configured to cause an insulation gas to flow in the insulation cylinder; a bushing for each of the capacitors, the bushing being positioned outside the insulation cylinder; and a gas spraying structure positioned outside the insulation cylinder, the gas spraying structure being configured to spray the insulation gas to the bushing.
Abstract:
A glass incandescent display lamp is provided which includes a glass container and a glass faceplate forming a sealed glass envelope enclosing an evacuated space. A plurality of electrically-conductive filament posts having first and second ends is provided with the filament posts extending through a wall of the glass envelope so that the first ends terminate in the evacuated space, and the second ends terminate outside of the sealed glass envelope. A set of incandescent filaments is secured to the first ends of the filament posts for the passage of current and for producing a display. In addition, a plurality of conductor pins for connecting the filaments to an external source of power is provided with each of the conductor pins having one end embedded in the wall of the glass envelope and the other end extending to the exterior of the sealed glass envelope. In order to provide strain relief for the filament posts and in order to prevent breaking of the hermetic seal, the second ends of the filament posts are connected to the portion of the conductor pins which are outside of the sealed glass envelope.