Abstract:
A coding method for a pulse transmission system specifies temporal and/or non-temporal pulse characteristics according to temporal and/or non-temporal characteristic value layouts having one or more allowable and non-allowable regions. The method generates codes having predefined properties. The method generates a pulse train by mapping codes to the characteristic value layouts, where the codes satisfy predefined criteria. In addition, the predefined criteria can limit the number of pulse characteristic values within a non-allowable region. The predefined criteria can be based on relative pulse characteristic values. The predefined criteria can also pertain to spectral properties and to correlation properties. The predefined criteria may pertain to code length and to the number of members of a code family. The pulse train characteristics may pertain to a subset of the pulse train.
Abstract:
Methods and systems are provided for spreading spectral density of pulse streams during digital to analog conversion. An example spreading circuit may comprise an accumulator circuit, a bit generator circuit, a comparator circuit, and an inverter circuit. The accumulator circuit may be operable to receive a signal to be spread and generate an output based on the signal to be spread and at least one other input. The bit generator circuit may be operable to input into the accumulator circuit zero-sum sequences. The comparator circuit may be operable to provide a stream of pulses based on the output of the accumulator circuit. The inverter circuit may be operable to invert output of the comparator circuit, wherein output of the inverter circuit is input into the accumulator circuit.
Abstract:
A code specifies characteristics of pulses transmitted and received by an impulse transmission system. The invention provides methods for defining non-allowable regions within pulse characteristic value range layouts enabling non-allowable regions to be considered when generating a code. Various approaches are used to define non-allowable regions based either on the pulse characteristic value range layout or on characteristic values of one or more other pulses. Various permutations accommodate differences between temporal and non-temporal pulse characteristics. Approaches address characteristic value layouts specifying fixed values and characteristic value layouts specifying non-fixed values. When generating codes to describe pulses, defined non-allowable regions within pulse characteristic value layouts are considered so that code element values do not map to non-allowable pulse characteristic values.
Abstract:
An ultra-wideband communication and/or location system having a plurality of channels, each implementing a respective one of a plurality of predetermined codewords. Within each channel, one or more predetermined pulse repetition frequences are defined. Within a single UWB system, more than two networks of transceivers may be co-located without mutual interference if each is assigned a unique combination of codewords and spreading factors.
Abstract:
A spreading method and apparatus for spreading the spectral density of a pulse stream by summing a set of randomly selected zero-sum sequences to an incoming pulse stream and ensuring that the number of pulses output by the spreading method and apparatus is equal to the number of pulses input to the spreading method and apparatus.
Abstract:
Methods and systems are provided for spreading spectral density of pulse streams during digital to analog conversion. An example system may comprise an accumulator circuit, a bit generator circuit, and a feedback circuit. The accumulator circuit may be operable to receive a signal to be spread and generate an output based on the signal to be spread and on one or more inputs generated within the system. The bit generator circuit may be operable to input into the accumulator circuit sequences meeting at least one particular criterion. The feedback circuit may be operable to apply an adjustment to a signal corresponding to an output of the accumulator circuit to generate a feedback signal, and input the feedback signal into the accumulator circuit.
Abstract:
Methods and systems are provided for spreading spectral density of pulse streams during digital to analog conversion. An example system may comprise an accumulator circuit, a bit generator circuit, and a feedback circuit. The accumulator circuit may be operable to receive a signal to be spread and generate an output based on the signal to be spread and on one or more inputs generated within the system. The bit generator circuit may be operable to input into the accumulator circuit sequences meeting at least one particular criterion. The feedback circuit may be operable to apply an adjustment to a signal corresponding to an output of the accumulator circuit to generate a feedback signal, and input the feedback signal into the accumulator circuit.
Abstract:
An ultra-wideband communication and/or location system having a plurality of channels, each implementing a respective one of a plurality of predetermined codewords. Within each channel, one or more predetermined pulse repetition frequences are defined. Within a single UWB system, more than two networks of transceivers may be co-located without mutual interference if each is assigned a unique combination of codewords and spreading factors.
Abstract:
An ultra-wideband communication and/or location system having a plurality of channels, each implementing a respective one of a plurality of predetermined codewords. Within each channel, one or more predetermined pulse repetition frequences are defined. Within a single UWB system, more than two networks of transceivers may be co-located without mutual interference if each is assigned a unique combination of codewords and spreading factors.
Abstract:
Methods and systems are provided for spreading spectral density of digital-to-analog conversion output signals. A spreading circuit may spread a digital-to-analog converter (DAC) output signal over a particular frequency spectrum, with the spreading circuit receiving the DAC output signal; generating a plurality of internal control signals; and generating based on the DAC output signal and the one or more internal control signal a corresponding spread output signal. The Internal control signals may comprise at least a first control signal, generated based on sequences meeting at least one particular criterion, a second control signal, generated based on a feedback corresponding to an intermediate output generated within the spreading circuit. The spreading circuit may generate the first control signal based on zero-sum sequences. The spreading circuit may generate a stream of pulses based on the intermediate output, and may generate the feedback signal based on the stream of pulses.