Abstract:
This invention relates to a fuel reforming apparatus for producing a carbon-monoxide free reformed fuel gas comprising hydrogen. More particularly, this invention relates to nonthermal plasma reactors for removing carbon monoxide from a reformed fuel gas produced from a fuel containing bonded atoms of hydrogen exiting a reformer. More particularly, this invention relates to nonthermal plasma reactors for reforming a fuel containing bonded atoms of hydrogen into a reformed fuel gas. This invention relates further to hydrogen-oxygen fuel cells, which comprise a fuel reformer for reforming a fuel into a reformed fuel gas comprising hydrogen, a carbon monoxide remover for removing carbon monoxide in the reformed fuel gas and supplying the reformed fuel gas to the fuel cell.
Abstract:
Methanol is synthesized from a gas produced through gasification of biomass serving as a raw material, making use of a biomass feeding means for feeding biomass into a furnace main body and, located above the biomass feeding means, combustion-oxidizing-agent-feeding means for feeding into the furnace main body a combustion-oxidizing agent containing oxygen or a mixture of oxygen and steam.
Abstract:
A system and process for maximizing the generation of electrical power from a variety of hydrocarbon feedstocks. The hydrocarbon feedstocks are first gasified and then oxidized in a two-chamber system and process using oxygen gas rather than ambient air. Intermediate gases generated in the system and process are recirculated and recycled to the gasification and oxidation chambers in order to maximize energy production. The energy produced through the system and process is used to generate steam and produce power through conventional steam turbine technology. In addition to the release of heat energy, the hydrocarbon feedstocks are oxidized to the pure product compounds of water and carbon dioxide, which are subsequently purified and marketed. The system and process minimizes environmental emissions.
Abstract:
A partial oxidation feed system (10) and a method are provided. The system (10) includes a slag additive slurry feed system (31) configured to combine a slurrying agent (24), a mineral slag additive (22), and a liquid slurrying medium (25) to generate a stabilized mineral slurry (26). The slurrying agent (24) is configured to increase a viscosity of the stabilized mineral slurry (26). The system (10) also includes a partial oxidation system (12) configured to receive the stabilized mineral slurry (26), a feedstock (16), and oxygen (14) into a gasifier reaction chamber (27). The partial oxidation system (12) is configured to partially oxidize the feedstock (16) to produce a gaseous product (18) and a solid product (20).
Abstract:
A partial oxidation feed system (10) and a method are provided. The system (10) includes a slag additive slurry feed system (31) configured to combine a slurrying agent (24), a mineral slag additive (22), and a liquid slurrying medium (25) to generate a stabilized mineral slurry (26). The slurrying agent (24) is configured to increase a viscosity of the stabilized mineral slurry (26). The system (10) also includes a partial oxidation system (12) configured to receive the stabilized mineral slurry (26), a feedstock (16), and oxygen (14) into a gasifier reaction chamber (27). The partial oxidation system (12) is configured to partially oxidize the feedstock (16) to produce a gaseous product (18) and a solid product (20).