Abstract:
A hot melt adhesive composition is based on an isotactic polypropylene random copolymer (RCP). The composition contains about 4%-50% by weight of the RCP copolymer, about 20%-65% by weight of a compatible tackifier, about 0%-40% by weight of a plasticizer, about 0%-3% by weight of a stabilizer, about 0%-40% by weight of a wax, and optionally about 0%-60% by weight of an atactic poly-null-olefin (APAO). The adhesive composition may be used in a number of applications such as, for example, in disposable nonwoven hygienic articles, paper converting, flexible packaging, wood working, carton and case sealing, labeling and other assembly applications.
Abstract:
A housewrap material for controlling moisture in the walls of a building includes a moisture vapor permeable, water impermeable sheet material having opposite surfaces with a plurality of drainage channels formed in the sheet material for directing the flow of liquid and for imparting to the sheet material a three-dimensional configuration. The sheet material has a crush resistance under a load of about 2.65 psi of at least 50%. In one embodiment, the integral drainage channels are defined by a plurality of generally parallel extending peaks and valleys that allow water to be drained from the wall. The composite nonwoven material has sufficient strength and stiffness to impart significant crush resistance to the composite, so that the integral drainage channels will not be collapsed or destroyed by the subsequent application of siding, stucco, paneling or the like to the building. Preferably, the composite sheet material has a crush resistance of at least 50% when subjected to a pressure of about 2.65 psi. This is particularly advantageous when the composite sheet material is used in conjunction with the application of stucco, although the advantages of the present invention are equally applicable when used in conjunction with a rigid exterior siding material.
Abstract:
Methods for reducing the trying time of fabric comprise treating the fabric with a treatment composition comprising formaldehyde, catalyst for crosslinking the formaldehyde with natural fibers in the fabric, and silicone elastomer or a precursor thereof, and heating the treated fabric to effect crosslinking of the formaldehyde. Fabrics having reduced drying times, particularly in combination with additional advantageous properties, are produced.
Abstract:
A multiaxial laminated non-woven fabric is comprised of tows used as a constituent material and overlaid and bonded with one another. The starting material tow has crimps and has total tex of not more than 300,000 and tow-constituting filaments have an average fineness of not more than 3 tex. A three-dimensional moulded products from the multiaxial non-woven fabric is also provided, and a method for stably producing the non-woven tow fabric while ensuring quality comprises subjecting tows multiaxially and obliquely overlaid with one another to bonding treatment, such as needle punching, or heat treatment while they are held by pins of an overlaying machine.
Abstract:
Materials and methods are provided for producing preform materials for impact-resistant composite materials suitable for liquid molding. An interlayer comprising a spunbonded, spunlaced, or mesh fabric is introduced between non-crimped layers of unidirectional reinforcing fibers to produce a preform for use in liquid-molding processes to produce composite materials. Interlayer material remains as a separate phase from matrix resin after infusion, and curing of the preform provides increased impact resistance by increasing the amount of energy required to propagate localized fractures due to impact. Constructions having the interlayer materials melt-bonded to the reinforcing fibers demonstrate improved mechanical preformance through improved fiber alignment compared to other fabrication and preforming methods.
Abstract:
The invention concerns a web comprising an intimate mixture of mixed slivers of long reinforcing staple fibres (14) obtained by stretch-breaking and long thermoplastic matrix fibres (15), those different fibres being parallel in the mixture.
Abstract:
The present invention provides a nonwoven fabric that is especially engineered to function as the substrate for a dryer activated fabric softener sheet. The substrate has a basis weight of 0.48 ounces per square yard or less, a thickness of from about 0.16 mm to about 0.38 mm, and comprises a nonwoven web of fibers, wherein at least some of the fibers are hollow. Preferably the fibers have a denier of from 2 to 8. In preferred embodiments of the invention, the hollow fibers have a void area at least 10 percent of the fiber cross-section, and the fibers have a noncircular trilobal cross-section.
Abstract:
The processes and apparatus of the present invention concerns melt spinning high viscosity fluoropolymers into single filaments or multifilament yarns at high spinning speeds, the melt spinning being carried out at a temperature which is at least 90null C. greater than the melting point of the polymer or in the case of perfluoropolymer, at a temperature of at least 450null C., and the yarns produced by the process, wherein the filaments can exhibit an orientation at the surface of the filament no greater than at the core of the filament.
Abstract:
An apparatus for manufacturing a transversely aligned web has a spinning device provided with a plurality of nozzles for extruding molten polymer as filaments, and a conveyor on which the filaments spun by the spinning device are piled and traveling in a direction cross to the direction of array of the nozzles. The spinning device is provided with a high-speed fluid blowing unit for blowing a high-speed fluid in a direction parallel with a direction in which the filaments are extruded from the nozzles so as to attenuate the filaments. Further, the apparatus for manufacturing the transversely aligned web has at least one air stream vibrating mechanism for cyclically changing the flowing direction of the high-speed fluid blown from the high-speed fluid blowing unit in a direction cross to the machine direction of the conveyor. The filaments are vibrated in a direction cross to the machine direction of the conveyor, owing to the high-speed fluid by the air stream vibrating unit.
Abstract:
The present invention refers to a composite support with fire resistance property for bituminous roofing sheaths. The composite support (9) comprises a first (1) and a second (7) layer of non-woven synthetic material met and a glass film (6) interposed between said layers (1, 7), between which a plurality of longitudinally oriented reinforcing glass filaments (4) are interposed.