Abstract:
La invencion está dirigida a una pantalla cristalina líquida que comprende una celda de pantalla que contiene material cristalino líquido y una capa de retardo, dicha capa de retardo comprendiendo una capa de material de peso molecular alto, de preferencia ligeramente entrelazada y un substrato, en donde el material de peso molecular alto tiene una fase neumática por arriba de su Tv y una viscosidad dinámica a la temperatura de trabajo de por lo menso 100 Pa.s y la diferencia de la Ta del material de peso molecular ato y la Ta del material de peso molecular bajo de la celda de pantalla (T8celda) esta en la escala de -301C a +30 degree C, preferiblemente en la escala de -20 degree C a +20 degree C y muy preferiblemente en la escala de -10 degree C a + degree 0 degree C; y la Tv del material cristalino líquido de peso molecular alto es menor de 50 degree C; se encontro que si se usa material de peso molecular alto con una Tc comparable con la del material cristalino líquido preferiblemente de peso molecular bajo la celda activa, la dependencia de la temperatura del valor de retardo de la capa de retardo es comparable con la de la celda activa; de esta manera, el valor de retardo de la capa de retardo es comparable con el de la celda activa dentro de la escala de temperatura en la cual se usan pantallas; también se encontro que entrelazando el material cristalino líquido de peso molecular alto, las capas de retardo de conformidad con la invencion se vuelven menos susceptibles a la formacion de agujeros pequeños y variacion indeseable de la torsion, y tienen estabilidad mecánica mejorada.
Abstract:
Se describe un sistema de proyeccion de pantalla de cristal líquido (LCD) (50) que incluye un panel de proyeccion (52), una fuente luminosa (56) y un reflector (58). El panel de proyeccion incluye una LCD (60) y un polarizador (64) sobre un lado de la LCD, y el polarizador reflectivo es una pila de capas multiples de pares (44) de capas de material adyacentes (41, 43). Cada uno de los pares de capas muestra una diferencia en el índice de refraccion entre las capas adyacentes en una primera direccion en el plano del polarizador de reflexion, y no muestra esencialmente diferencia en el índice de refraccion entre las capas adyacentes, en una segunda direccion en el plano del polarizador reflectivo y ortogonal a la primera direccion. Una placa (66) de un cuarto de onda es asegurada al polarizador reflectivo. Los rayos luminosos provenientes de la fuente de luz pasan ya sea a través del polarizador refelctivo y sobre la LCD, o son reflejados nuevamente hacia la fuente luminos, dependiendo de su polarizacion. La luz que es reflejada por el reflector nuevamente hacia la LCD. El uso de la placa de un cuarto de onda y el reflector, ayudan a reciclar que la que pudiera ser típicamente considerada como luz desechada, mientras que al mismo tiempo se reduce la constitucion de calor dentro de la LCD.
Abstract:
A polycarbonate polymer or copolymer is synthesised from a dihydroxydiarylalkane which can be halo-substituted; the highly transparent polymer can be mixed with up to 50 wt% of a polystyrene and is molded into a film or sheet, e.g. by extrusion, and uniaxially stretched, preferably by tentering so as not to cause a neck-in ratio or more than 10%. The stretched film has its optical phase retardation controlled to cause (a) a retardation of phase difference of ½ an average wavelength of natural light of wavelength 550 nm with its retardation value controlled to 200-350 nm, preferably 250-300 nm, (b) full retardation of the actual wavelength with its retardation at 475-625, preferably 525-575 nm or (c) an intermediate retardation value of 350-475 nm. The film also has a color difference or lack of unevenness of not more than 20 determined with a spectrophotometer on usually 10 at random locations of the sample film whilst illuminated through crossed Nicol prisms with the film set so that its main optical axis is at 45° to the Nicols. The retardent films are useful in optical filters and liquid crystal displays.
Abstract:
A process for making a polarizer such as a polarizing plate or a polarizing film comprises the step of applying at least one of a magnetic field or an electric field to a coated layer 16 containing a dichromatic material therein which is formed on a substrate 14, thereby to effect molecular or crystalline orientation of the dichromatic material in a predetermined direction. The coated substrate 14 is passed through the magnetic or electric field, or the magnetic poles 10a, 10b or electrodes 26a, 26b, may be moved across the coated substrate. The coating may be dried and a second coating applied and oriented in a like way, with a direction of orientation at an angle to that of the first direction, to form a circular polarizer. The substrate may be of glass or plastics. The process avoids the drawbacks inherent in the prior art process of applying a stress to the substrate.
Abstract:
A polarization rotation compensator and an optical isolator using the same are described. The optical isolator comprises a first birefrigent wedge plate; a polarization rotation compensator composed of a combination of a half-wave plate whose principal axis is inclined at an angle of θ/2 with respect to the plane of polarization of the incident light and a quarter-wave plate whose principal axis is inclined at an angle of θ with respect to the plane of polarization of the incident light; a Faraday rotator; and a second birefringent wedge plate, the Faraday rotator, quarter wavelength plate, and half-wavelength being arranged in the order of propagation of the backward light or forward light.
Abstract:
The cladding and a portion of the core of a length of optical fiber are removed to form an interaction region. A form birefringent stack is positioned on the exposed core. The refractive index of the stack for polarizations parallel to the plane of the interaction region is approximately equal to the refractive index of the fiber core so that these polarizations radiate from the fiber. The refractive index of the stack for the polarization normal to the plane of the interaction region is approximately equal to the refractive index of the cladding so that this polarization remains guided by the fiber. A photodetector forms an error signal from the polarization radiated from the fiber, and control circuitry processes the error signal to drive a polarization controller that adjusts the polarization of light input to the polarizer to minimize the error signal.
Abstract:
An optical filter for use in a solid state color camera containing a plurality of solid state image sensing devices, the filter including a first crystal plate for separating an incident ray into an ordinary ray and extraordinary rays in a direction of 45° with respect to the horizontal scanning direction of said solid state image sensing devices, a second crystal plate for separating the incident ray thereof into an ordinary ray and extraordinary rays in a direction which coincides with the horizontal scanning direction, and a third crystal plate for separating the incident ray into an ordinary ray and extraordinary ray in a direction of -45° with respect to the horizontal scanning direction. The second crystal plate is located between the first and third crystal plates, and the three plates are bonded together in the form of a laminate. The optical filter thus produced provides a point diffusion for an incident ray to direct the diffused rays on the solid state image sensing devices. The optical filter then forms first and second trap straight lines and a third trap straight line extending along the vertical scanning direction of the solid state image sensing devices for distributing a spatial frequency spectrum of a sampled output from the solid state image sensing device.
Abstract:
A fiber-optic polarizer comprises an optical fiber (25) having a core (26) and cladding (27) with different refractive indices and forming a single-mode guiding region, the core (26) having a non-circular cross-section defining two transverse orthogonal axes which, in combination with the different refractive indices, permit the de-coupiing of waves polarized along the axes. The guiding region is located close to the surface (29) of the fiber (25), and the outer surface (29) of the fiber (25) has a non-circular cross-section so that the location of the guiding region and the orientation of the axes can be ascertained from the geometry of the outer surface (29). A polymeric film (40) is coupled to the fiber surface (29) that is closest to the core, the film (40) having different indices of refraction along axes aligned with the transverse orthogonal axes of the core (26), one of the indices of refraction of the film (40) being less than the effective index of refraction of a desired wave in the guiding region of the fiber (25), and the other index of refraction of the film (40) being greater than the effective index of refraction of an unwanted wave in the guiding region of the fiber (25).
Abstract:
This invention relates to fiber optic apparatus and methods for polarizing light for use in fiber optic devices, such as rotation sensors. A phase grating (52) formed of alternating layers of dielectrics (54,56) having different indices of refraction is placed adjacent a half coupler (12) that includes a fiber (20,22) having a cladding thickness which forms an interaction region. The evanescent field of light of a selected polarization interacts with the phase grating (52) to couple out of the fiber (20,22) while light of a second selected polarization remains in the fiber (20,22).
Abstract:
A plastic substrate for use in optical memory cards or disks, comprising a laminated structure of two or more film layers of a transparent thermoplastic resin having a total luminous transmittance, determined by ASTM D1003 Procedure A (at 1 mm thickness), of not less than about 80 %, said film having an absolute value of retardation of over 25 nm, and said laminated structure having an absolute value of retardation of not over 25 nm as a whole as a result of laminating the individual film layers in such an arrangement that the retardations of the individual layers negate each other.