-
公开(公告)号:CN111916672A
公开(公告)日:2020-11-10
申请号:CN202010761311.5
申请日:2020-07-31
Applicant: 上海交通大学
IPC: H01M4/134 , H01M4/1395 , H01M4/38 , H01M4/62 , H01M10/42
Abstract: 本发明涉及一种界面稳定的化学偶联硅-导电高分子复合电极及其制备方法,复合电极包括电极片,所述电极片上涂覆有交联导电聚合物粘结剂-硅电极,所述交联导电聚合物粘结剂-硅电极由以下原料组成:硅活性材料、PEDOT:PSS和硅烷偶联剂。本发明硅烷偶联剂的引入改善了不亲水的硅材料与导电高分子水溶液之间的界面相容性,使其更容易形成均一的浆料,利用简单原料制备出高性能电极,方法简单,设计巧妙,所制备的交联导电聚合物粘结剂电极得到很好的倍率性能和长循环稳定性,具有很高的实际应用前景。
-
公开(公告)号:CN111082079B
公开(公告)日:2021-01-22
申请号:CN201911398839.4
申请日:2019-12-30
Applicant: 上海交通大学
Abstract: 本发明涉及一种双功能氧气电催化剂材料及其制备方法和应用,该材料是以纳米多孔碳基化合物为壳,以纳米合金、过渡金属化合物纳米颗粒为核的核壳结构,所述纳米多孔碳基化合物是由N、P和S共掺杂且含有高导电碳相的纳米多孔碳基化合物,所述纳米合金颗粒是由六方相的Co2P和立方相的CoFe合金组成,并以纳米颗粒形貌镶嵌在所述纳米多孔碳基化合物中。与现有技术相比,本发明采用一种环境友好且效率高的一步法进行合成,无需加入任何溶剂参与反应,无需进一步的后处理步骤,最后该材料展现出优异的对氧还原和氧析出的电催化性能。
-
公开(公告)号:CN113086983A
公开(公告)日:2021-07-09
申请号:CN202110336004.7
申请日:2021-03-29
Applicant: 上海交通大学
Abstract: 本发明涉及一种基于流动电化学的微生物培养与固碳方法,包括以下步骤:(1)将铁硫杆菌加入到9K培养基中,调节pH值,在恒温水浴中,磁搅拌,得到铁硫杆菌菌液;(2)将铁硫杆菌菌液循环加入到液流电池中,并在液流电池中加载电流,使铁硫杆菌在流动电化学微生物培养系统中不断繁殖。本发明铁硫杆菌在繁殖过程中不会产生沉淀,在流动电化学微生物培养系统通过加载电流使菌种不断繁殖,并可不断收集,并通过铁硫杆菌不断繁殖过程,实现大气中CO2不断固定。
-
公开(公告)号:CN110224145B
公开(公告)日:2022-01-28
申请号:CN201910375783.4
申请日:2019-05-07
Applicant: 上海交通大学
Abstract: 本发明涉及基于CoS2‑CoS n‑n半导体结的多硫/碘液流电池电极制备方法,将金属钴盐、尿素和硫源加入到乙二醇和N,N‑二甲基甲酰胺的混合溶剂中,室温下搅拌,然后在高温下进行反应,结束后冷却至室温,离心分离得到产物并洗涤,真空干燥,得到黑色的CoS2、CoS2/CoS和CoS粉末状产物。与现有技术相比,本发明具有高结晶性,而且通过构建n‑n结可以有效的促进界面电荷的转移、提高材料的导电性、减小极化和提高材料催化性能的可逆性,从而具有高的催化性能和良好的循环稳定性。
-
公开(公告)号:CN111082079A
公开(公告)日:2020-04-28
申请号:CN201911398839.4
申请日:2019-12-30
Applicant: 上海交通大学
Abstract: 本发明涉及一种双功能氧气电催化剂材料及其制备方法和应用,该材料是以纳米多孔碳基化合物为壳,以纳米合金、过渡金属化合物纳米颗粒为核的核壳结构,所述纳米多孔碳基化合物是由N、P和S共掺杂且含有高导电碳相的纳米多孔碳基化合物,所述纳米合金颗粒是由六方相的Co2P和立方相的CoFe合金组成,并以纳米颗粒形貌镶嵌在所述纳米多孔碳基化合物中。与现有技术相比,本发明采用一种环境友好且效率高的一步法进行合成,无需加入任何溶剂参与反应,无需进一步的后处理步骤,最后该材料展现出优异的对氧还原和氧析出的电催化性能。
-
公开(公告)号:CN110224145A
公开(公告)日:2019-09-10
申请号:CN201910375783.4
申请日:2019-05-07
Applicant: 上海交通大学
Abstract: 本发明涉及基于CoS2-CoS n-n半导体结的多硫/碘液流电池电极制备方法,将金属钴盐、尿素和硫源加入到乙二醇和N,N-二甲基甲酰胺的混合溶剂中,室温下搅拌,然后在高温下进行反应,结束后冷却至室温,离心分离得到产物并洗涤,真空干燥,得到黑色的CoS2、CoS2/CoS和CoS粉末状产物。与现有技术相比,本发明具有高结晶性,而且通过构建n-n结可以有效的促进界面电荷的转移、提高材料的导电性、减小极化和提高材料催化性能的可逆性,从而具有高的催化性能和良好的循环稳定性。
-
-
-
-
-