-
公开(公告)号:CN117368774A
公开(公告)日:2024-01-09
申请号:CN202310878743.8
申请日:2023-07-17
Applicant: 北京交通大学
IPC: G01R31/392 , G06F18/10 , G06F18/27 , G01R31/389 , G01R31/367
Abstract: 本发明涉及锂离子电池健康状态估计领域,公开了一种基于阻抗谱重构技术的锂离子电池健康状态估计方法。本发明采用逆重复M序列来设计包含多频成分的电流激励信号以对电池阻抗谱进行快速测试,通过选取Morse复小波为母小波对电池电流激励与测量得到的电压响应进行连续小波变换,进行目标频率范围内的电池阻抗谱重构,基于不同老化状态电池重构阻抗谱在特殊频率点处的阻抗幅值建立估计电池健康状态的多元线性回归模型,从而实现锂离子电池健康状态的快速评估。该方法快速准确,大大缩短了电池阻抗谱的测试时间,同时能够适用于多类型、多应用场景下锂离子电池的健康状态评估。
-
公开(公告)号:CN116359767A
公开(公告)日:2023-06-30
申请号:CN202310167092.1
申请日:2023-02-24
Applicant: 中国长江三峡集团有限公司 , 北京交通大学
IPC: G01R31/389 , G01R31/367 , G01R31/3842
Abstract: 本发明提供了一种短路阻值估计方法、装置、计算机设备及介质。其中,短路阻值估计方法,包括:基于正常电池的正常等效电路模型,获得正常电池的测量电池电量和模型电压误差;基于模型电压误差和短路电池的内短路等效电路模型,确定短路电池的预测电池电量,内短路等效电路模型是在正常等效电路模型上并联一个内短路电阻得到;基于正常电池的测量电池电量和短路电池的预测电池电量,计算内短路等效电路模型中的内短路阻值。通过本发明,准确估计内短路阻值,抑制模型误差对内短路阻值估计精度的影响。
-
公开(公告)号:CN116027200A
公开(公告)日:2023-04-28
申请号:CN202211680160.6
申请日:2022-12-27
Applicant: 北京交通大学
IPC: G01R31/367 , G01R31/392 , G06F16/215 , G06F17/16
Abstract: 本发明涉及一种基于历史数据的锂离子电池异常识别及诊断方法,所述锂离子电池异常识别及诊断方法能够被一个或多个处理器执行,包括:S1,所述一个或多个处理器获取电池系统的历史数据,并对所述历史数据按照删除无效数据和补全缺失数据的方式进行清洗;S2,所述一个或多个处理器获取所述历史数据中的充电过程以进一步得到正常电池的电压阈值;S3,所述一个或多个处理器基于所述电压阈值确定电池的异常偏离指数,并基于所述异常偏离指数完成异常电池的筛选;S4,所述一个或多个处理器能够基于异常偏离指数的变化趋势对异常电池的故障类型进行确定,并基于异常偏离指数的变化速度判断异常电池的故障程度。
-
公开(公告)号:CN115166553A
公开(公告)日:2022-10-11
申请号:CN202210714553.8
申请日:2022-06-23
Applicant: 北京交通大学
IPC: G01R31/389 , H01M10/42
Abstract: 本发明涉及一种锂离子电池扩散极化过程无损分离方法,该方法利用电极和电池的热力学和扩散动力学间的匹配关系,根据辨识的全电池固相扩散系数,在基变换下分离电极的固相扩散过程。本发明主要包括如下步骤:首先,构建电极和全电池的热力学参数匹配关系,获取正负极的电压增量特性;然后,根据电极和全电池的电压增量来选取合适的SOC点进行交流阻抗测试;然后,利用交流阻抗测试和等效阻抗模型辨识电池固相扩散时间常数;最后,在基变换的理论下分离电极的固相扩散时间,结合电极的电压增量实现电极扩散内阻的无损分离。该方法步骤简单,易于在线实现,且可靠性高,适用于电动汽车动力电池内部电极材料微观机理的无损检测。
-
公开(公告)号:CN112208389B
公开(公告)日:2022-02-11
申请号:CN202010933951.X
申请日:2020-09-08
Applicant: 北京交通大学 , 中车工业研究院有限公司
IPC: B60L58/10
Abstract: 本发明涉及一种针对车载动力电池的日常便捷检测方法,步骤为:步骤1:基于各个电池单体电压值,通过高斯分布拟合将电压值处于较低概率范围的异常电池单体,赋予异常值;步骤2:在车载动力电池充电全过程中,每间隔n秒,重复步骤1筛选出全部异常电池单体;步骤3:各异常电池单体,逐个对其全部的异常值的绝对值进行累加,得到累加异常值;步骤4:将全部异常电池单体分组对应于异常类型分类,累加异常值作为判断标准;步骤5:根据异常分布变化趋势判断异常情况。本发明,检测简单便捷,成本低,可用于日常的电动汽车动力电池检测,可对车辆当前整体状态进行大致的检测评估,降低车辆因长期缺乏检测而造成较严重事故的可能性。
-
公开(公告)号:CN113884900A
公开(公告)日:2022-01-04
申请号:CN202111066744.X
申请日:2021-09-13
Applicant: 北京交通大学
IPC: G01R31/371
Abstract: 本发明公开了一种三元锂离子电池容量突变点预测方法,从已有的电池加速老化数据中提取与新的电池具有相同加速老化模式的迁移样本,用于训练机器学习模型,最终预测新的电池的容量突变点。锂离子电池容量突变点预测方法包括加速老化模式判断,迁移样本选择以及容量突变点预测。具体为从三元锂离子电池放电容量‑电压曲线,容量增量曲线,电压差分曲线的早期变化曲线上提取表征锂离子电池的健康状态的17个老化特征参数,然后利用机器学习算法对锂离子电池的加速老化模式进行早期诊断,然后根据加速老化模式判断结果从已有的电池加速老化数据中进行样本选择,利用迁移样本训练机器学习模型,最终对新的电池进行容量突变点预测。
-
公开(公告)号:CN112208389A
公开(公告)日:2021-01-12
申请号:CN202010933951.X
申请日:2020-09-08
Applicant: 北京交通大学 , 中车工业研究院有限公司
IPC: B60L58/10
Abstract: 本发明涉及一种针对车载动力电池的日常便捷检测方法,步骤为:步骤1:基于各个电池单体电压值,通过高斯分布拟合将电压值处于较低概率范围的异常电池单体,赋予异常值;步骤2:在车载动力电池充电全过程中,每间隔n秒,重复步骤1筛选出全部异常电池单体;步骤3:各异常电池单体,逐个对其全部的异常值的绝对值进行累加,得到累加异常值;步骤4:将全部异常电池单体分组对应于异常类型分类,累加异常值作为判断标准;步骤5:根据异常分布变化趋势判断异常情况。本发明,检测简单便捷,成本低,可用于日常的电动汽车动力电池检测,可对车辆当前整体状态进行大致的检测评估,降低车辆因长期缺乏检测而造成较严重事故的可能性。
-
公开(公告)号:CN107895411B
公开(公告)日:2021-01-12
申请号:CN201711106252.2
申请日:2017-11-10
Applicant: 北京交通大学 , 中国第一汽车股份有限公司
Abstract: 本发明公开了一种基于功率和功率变化等效性的锂离子电池工况提取方法,该方法包括以下步骤:步骤1:整理得到原始工况数据,假设输入的数据长度为T(s);步骤2:计算原始工况的功率区间概率分布和功率变化值区间概率分布;步骤3:将总工况每(T/200)s划分为一个小区间,称为短时间工况;步骤4:假设输出的数据长度为t(s),采用随机选取的方式,从200个短时间工况内随机选取(200t/T)个,并前后拼接在一起,称为假定目标工况;步骤5:分别计算各个假定目标工况的功率区间概率分布与功率变化值区间概率分布,并计算各假定目标工况的功率区间概率分布、功率变化值区间概率分布与原始工况的功率区间概率分布;步骤6:将得到的目标工况数据进行简化和规整,运用动态求平均方法,得到最终的工况结果。
-
公开(公告)号:CN109449541B
公开(公告)日:2020-09-01
申请号:CN201811123950.8
申请日:2018-09-26
Applicant: 北京交通大学
IPC: H01M10/615 , H01M10/625 , H01M10/654
Abstract: 本发明涉及一种锂离子电池变频变幅交流低温自加热方法,包括:确定对锂离子电池寿命无影响的极化电压幅值范围,并根据此范围选取正弦交流极化电压幅值,根据正弦交流极化电压幅值与当前温度下电池内阻确定正弦交流电流幅值;在已选定的正弦交流极化电压幅值下,根据电池阻抗与频率的关系,通过产热功率与频率的关系计算得到当前温度下产热功率最大的频率;根据确定的幅值和频率,利用正弦交流电流信号对电池进行低温自加热;每隔一定温度,在保证恒定的极化电压幅值下,实时补偿正弦交流电流幅值,找到当前温度下的最佳加热频率,改变所施加的正弦交流电流信号的幅值与频率。本发明自加热速率快、对电池使用寿命无影响和加热温度均匀性好。
-
公开(公告)号:CN111448468A
公开(公告)日:2020-07-24
申请号:CN201780093842.8
申请日:2017-08-18
Applicant: 罗伯特·博世有限公司 , 北京交通大学
IPC: G01R31/3842 , G01R31/396
Abstract: 本发明涉及用于检测电池组一致性的方法、装置以及系统。该用于检测电池组一致性的方法包括:对电池组进行充电以获取所采集的电池单体的充电数据;基于所获取的充电数据来生成容量增量关系曲线;根据所生成的容量增量关系曲线,确定出多个容量增量峰,并计算与相应的容量增量峰对应的参数;以及根据所计算的与相应容量增量峰对应的参数,来对电池组一致性进行检测。本发明所采用的上述方法、装置以及系统不需要额外的硬件或测试来检测电池单体,而是可以仅在正常充电过程中就能够实现电池组一致性进行检测和评价。因此,每当执行深度再充电时,可以定期执行电池组的一致性检测和评价。
-
-
-
-
-
-
-
-
-