-
公开(公告)号:CN102324032A
公开(公告)日:2012-01-18
申请号:CN201110265540.9
申请日:2011-09-08
Applicant: 北京林业大学
Abstract: 本发明提供一种基于极坐标系下灰度共生矩阵的纹理特征提取方法,用于花卉种类的模式识别,包括:步骤一,根据花朵的中心对称和放射性的结构特点,从当前花朵数字图像中划分出包含完整纹理信息的纹理特征环区域;步骤二,通过极坐标系下的灰度共生矩阵对所述纹理特征环区域进行特征提取,获得纹理特征。本发明通过分区域特征提取以及极坐标系下的灰度共生矩阵,使得提取的纹理特征能更准确的描述花朵图像的放射性结构特点,进而能够提高花卉识别的准确率。
-
公开(公告)号:CN102324032B
公开(公告)日:2013-04-17
申请号:CN201110265540.9
申请日:2011-09-08
Applicant: 北京林业大学
Abstract: 本发明提供一种基于极坐标系下灰度共生矩阵的纹理特征提取方法,用于花卉种类的模式识别,包括:步骤一,根据花朵的中心对称和放射性的结构特点,从当前花朵数字图像中划分出包含完整纹理信息的纹理特征环区域;步骤二,通过极坐标系下的灰度共生矩阵对所述纹理特征环区域进行特征提取,获得纹理特征。本发明通过分区域特征提取以及极坐标系下的灰度共生矩阵,使得提取的纹理特征能更准确的描述花朵图像的放射性结构特点,进而能够提高花卉识别的准确率。
-
公开(公告)号:CN102324038B
公开(公告)日:2014-04-16
申请号:CN201110262117.3
申请日:2011-09-06
Applicant: 北京林业大学
Abstract: 本发明提供一种基于数字图像的植物种类识别方法,包括:采集植物器官数字图像作为测试样本,提取特征向量;将所述特征向量输入第一级分类器,获得投票数排名前n名的n个类别,3<n<10;第一级分类器通过如下方式获得:基于全部训练样本的特征集进行分类器训练;将所述特征向量输入第二级分类器,获得识别结果;第二级分类器通过如下方式获得:从所述全部训练样本的特征集中,提取所述n个类别所对应的特征集进行分类器训练。本发明通过分级SVM分类器,有效降低了分类器对样本种类数量的敏感性,消除了样本类别增加对识别准确率的影响,克服了SVM分类器对大样本量识别准确率低的问题,进而提高植物识别的准确率。
-
公开(公告)号:CN102324038A
公开(公告)日:2012-01-18
申请号:CN201110262117.3
申请日:2011-09-06
Applicant: 北京林业大学
Abstract: 本发明提供一种基于数字图像的植物种类识别方法,包括:采集植物器官数字图像作为测试样本,提取特征向量;将所述特征向量输入第一级分类器,获得投票数排名前n名的n个类别,3<n<10;第一级分类器通过如下方式获得:基于全部训练样本的特征集进行分类器训练;将所述特征向量输入第二级分类器,获得识别结果;第二级分类器通过如下方式获得:从所述全部训练样本的特征集中,提取所述n个类别所对应的特征集进行分类器训练。本发明通过分级SVM分类器,有效降低了分类器对样本种类数量的敏感性,消除了样本类别增加对识别准确率的影响,克服了SVM分类器对大样本量识别准确率低的问题,进而提高植物识别的准确率。
-
-
-