滨海湿地深度学习分类方法、装置、设备和存储介质

    公开(公告)号:CN111898662B

    公开(公告)日:2023-01-06

    申请号:CN202010701215.1

    申请日:2020-07-20

    Abstract: 本发明涉及一种滨海湿地深度学习分类方法、装置、设备和存储介质,该方法包括:对采集到的原始高光谱图像数据进行校正处理和归一化处理,得到待处理高光谱图像数据,以及,对采集到的原始激光雷达数据进行异常点去除处理和归一化处理,得到待处理激光雷达数据;构造各个模式的三层Octave卷积层;基于各个模式的三层Octave卷积层,对待处理高光谱图像数据和待处理激光雷达数据进行成分分离、成分组合以及频率分量综合,得到特征融合数据;提取特征融合数据中的方向性纹理信息,结合待处理高光谱数据进行空间、纹理以及光谱联合分类,得到目标联合分类特征,以确定目标类别。提高了不同分辨率、不同模态下的联合地物分类性能;实现高精度的协同分类。

    滨海湿地深度学习分类方法、装置、设备和存储介质

    公开(公告)号:CN111898662A

    公开(公告)日:2020-11-06

    申请号:CN202010701215.1

    申请日:2020-07-20

    Abstract: 本发明涉及一种滨海湿地深度学习分类方法、装置、设备和存储介质,该方法包括:对采集到的原始高光谱图像数据进行校正处理和归一化处理,得到待处理高光谱图像数据,以及,对采集到的原始激光雷达数据进行异常点去除处理和归一化处理,得到待处理激光雷达数据;构造各个模式的三层Octave卷积层;基于各个模式的三层Octave卷积层,对待处理高光谱图像数据和待处理激光雷达数据进行成分分离、成分组合以及频率分量综合,得到特征融合数据;提取特征融合数据中的方向性纹理信息,结合待处理高光谱数据进行空间、纹理以及光谱联合分类,得到目标联合分类特征,以确定目标类别。提高了不同分辨率、不同模态下的联合地物分类性能;实现高精度的协同分类。

Patent Agency Ranking