-
公开(公告)号:CN113659421A
公开(公告)日:2021-11-16
申请号:CN202111069327.0
申请日:2021-09-13
Applicant: 哈尔滨工业大学
Abstract: 一种2μm单波长电光腔倒空固体激光器,它涉及一种固体激光器。解决现有单掺Ho固体激光器难以输出较高功率的高重频、窄脉宽、稳定的脉冲激光,以及输出波长不稳定的问题。一种2μm单波长电光腔倒空固体激光器,它包括第一二色镜、第二二色镜、增益介质、第一全反镜、F‑P标准具、偏振片、LGS晶体、四分之一波片及第二全反镜。本发明用于2μm单波长电光腔倒空固体激光器。
-
公开(公告)号:CN109650863B
公开(公告)日:2021-06-25
申请号:CN201910099462.6
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/583 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种氮化硼‑锶长石高温透波复相陶瓷材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述氮化硼‑锶长石高温透波复相陶瓷材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:将所述原料粉体进行球磨,得到球磨粉末;S3:将所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末冷压成型,得到原料坯体;S5:对所述原料坯体进行热等静压烧结,得到氮化硼‑锶长石高温透波复相陶瓷材料。本发明提供的氮化硼‑锶长石高温透波复相陶瓷材料的制备方法,通过将六方氮化硼引入锶长石中,使得制备的复相陶瓷材料不仅具有良好的可加工性能,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN111689778A
公开(公告)日:2020-09-22
申请号:CN202010611802.1
申请日:2020-06-30
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/65 , C04B35/645
Abstract: 一种高致密SiBCN陶瓷材料及其制备方法,本发明涉及SiBCN陶瓷材料及其制备方法。本发明要解决现有机械合金化-热压烧结法制备SiBCN陶瓷材料的密度低,尺寸小,生产效率低的问题。一种高致密SiBCN陶瓷材料由立方晶系的硅粉、石墨粉和六方氮化硼粉制备而成。方法:称取立方晶系的硅粉、石墨粉和六方氮化硼粉,并放入球磨罐中球磨,然后热压预烧结,最后封入包套进行热等静压,即完成高致密SiBCN陶瓷材料的制备。本发明用于高致密SiBCN陶瓷材料及其制备。
-
公开(公告)号:CN106747443B
公开(公告)日:2020-05-26
申请号:CN201611030333.4
申请日:2016-11-16
Applicant: 哈尔滨工业大学
IPC: C04B35/515 , C04B35/624
Abstract: 本发明提供了一种溶胶凝胶法引入高温第二相碳化锆制备硅硼碳氮‑碳化锆复相陶瓷的方法,属于硅硼碳氮陶瓷基复合材料技术领域。本发明的材料以正丙醇锆、糠醇、盐酸、乙酰丙酮和乙醇为原料,溶胶凝胶引入第二相所占硅硼碳氮的质量比为5~20:100,所述的正丙醇锆:糠醇:盐酸摩尔比为1:2:1,所述的硅粉与六方氮化硼粉体的质量比为1:0.1~1.2。方法是碳化锆前驱体溶液的制备,硅硼碳氮陶瓷复合粉末的制备,粉末前驱体的制备,粉末的制备,最后将粉末放在热压中进行热压烧结,烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa,烧结气氛为氩气。溶胶凝胶所引入的前驱体碳热还原反应生成碳化锆,保持了硅硼碳氮基体的性能。
-
公开(公告)号:CN111129931A
公开(公告)日:2020-05-08
申请号:CN201911418769.4
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 种子光注入的10μm~12μm波段长波红外光学参量振荡器,它属于光学领域,解决现有长波红外光学参量振荡器出光阈值高、光光转换效率低的问题。种子光注入的10μm~12μm波段长波红外光学参量振荡器,它为一束连续种子光与一束脉冲泵浦光同时注入光学参量振荡器,连续种子光与脉冲泵浦光经光学参量振荡器产生信号光和闲频光;所述的连续种子光的波长与信号光或闲频光相同。本发明用于种子光注入的10μm~12μm波段长波红外光学参量振荡器。
-
公开(公告)号:CN110068552A
公开(公告)日:2019-07-30
申请号:CN201910398056.X
申请日:2019-05-14
Applicant: 哈尔滨工业大学
IPC: G01N21/45
Abstract: 基于2.02μm单纵模激光器的分振幅型干涉仪,它涉及一种分振幅型干涉仪,属于光学领域,解决现有对632.8nm透过率低,但对2.02μm透过率高的晶体难以测量折射率均匀性的问题。基于2.02μm单纵模激光器的分振幅型干涉仪:第一平凸透镜的平面与第二平凸透镜的凸面相对,构成一号耦合系统;平凹透镜的平面与第四平凸透镜的凸面相对,构成二号耦合系统;第一二色镜、第二二色镜、Tm:LuAG晶体、F-P标准具、第三平凸透镜、第一反射镜、法拉第旋光器、二分之一波片及楔形输出镜构成2.02μm单纵模激光器;第一分光镜、第二分光镜、第三反射镜、第四反射镜及激光光束分析仪与待测晶体构成分振幅型干涉光路。
-
公开(公告)号:CN110061409A
公开(公告)日:2019-07-26
申请号:CN201910381073.2
申请日:2019-05-08
Applicant: 哈尔滨工业大学
Abstract: 窄线宽的10μm长波红外激光器,它涉及一种长波红外固体激光器,属于光学领域,解决现有10μm长波红外激光器输出光谱线宽较宽的问题。本发明泵浦光经耦合系统入射至泵浦光输入镜,透过的泵浦光入射至非线性晶体,得到10μm激光与2.6μm激光;2.6μm激光入射至长波输出镜,并反射至短波输出镜,一部分2.6μm激光输出,剩余2.6μm激光反射至长波输出镜;反射至长波输出镜的2.6μm激光穿过非线性晶体,并由泵浦光输入镜反射至体光栅,经体光栅反射回泵浦光输入镜,并反射至非线性晶体,得到2.6μm激光与10μm激光,10μm激光与剩余泵浦光入射至二色镜上,剩余泵浦光反射出去,10μm激光透过二色镜输出。
-
公开(公告)号:CN106518087B
公开(公告)日:2019-07-05
申请号:CN201611016929.9
申请日:2016-11-16
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/634
Abstract: 本发明提供了一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,属于硅硼碳氮陶瓷制备方法技术领域。步骤一、按摩尔比和质量百分比称取立方硅粉、六方氮化硼粉、石墨粉和PBSZ作为原料备用;步骤二、将步骤一称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨即获得含有非晶Si‑B‑C‑N的陶瓷粉末;其中球料质量比为10~90:1,磨球直径为5~9mm,球磨时间为10~60h;步骤三、将步骤二获得的非晶Si‑B‑C‑N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行球磨即获得SiBCN复合粉末;其中球料比为1~20:1,磨球直径为5~9mm,球磨时间为10~30h;步骤四、将步骤三获得的SiBCN复合粉末进行放电等离子烧结即获得以PBSZ为添加剂的Si‑B‑C‑N陶瓷材料。
-
公开(公告)号:CN106587780B
公开(公告)日:2019-04-26
申请号:CN201611183335.7
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: B33Y70/00 , C04B28/00 , B33Y10/00 , C04B111/20
Abstract: 本发明提供了一种用于3D打印的铝硅酸盐聚合物复合材料的制备及打印方法。制备方法,将硅酸盐粉体和铝硅酸盐粉体采用球磨工艺均匀混合,经筛分后获得粒径为10~50μm的铝硅酸盐聚合物干粉;向铝硅酸盐聚合物干粉中加入水,同时加入短切纤维、高效减水剂和缓凝剂,搅拌均匀,获得铝硅酸盐聚合物复合材料料浆;向铝硅酸盐聚合物复合材料料浆中均匀添加陶瓷颗粒,即获得3D打印用高粘度料浆。打印方法,将3D打印用高粘度料浆注入3D打印机中,控制成型盘温度为25~50℃,通过3D打印机程序即可打印出铝硅酸盐聚合物复合材料的坯体;对坯体进行养护,养护温度为25~120℃、养护湿度为20~90%、养护时间为3d,即获得3D打印成型的铝硅酸盐聚合物复合材料成品。
-
公开(公告)号:CN107800029A
公开(公告)日:2018-03-13
申请号:CN201710968380.1
申请日:2017-10-18
Applicant: 哈尔滨工业大学
CPC classification number: H01S3/042 , H01S3/0407 , H01S3/2316
Abstract: 本发明涉及一种自动温控自动调光固体激光系统,包括,第一光学系统,包括,第一激光泵浦装置、第二激光泵浦装置、第一输入镜、第一激光晶体、第一三维调整台、第一全反射镜、选模装置、第二三维调整台、第一输出镜;第二光学系统,包括,第二输入镜、第二激光晶体、温控调整装置、第二输出镜、滤光器;还包括第二全反射镜、探测装置;计算机控制系统,所述探测装置将光学信号转换成电学信号后输入计算机控制系统,计算机控制系统根据该电学信号形成第一控制信号对所述第一三维调整台、所述第二三维调整台进行自动调节;根据所述温度信号控制所述温控调整装置。本发明通过两级激光装置的设计,获得稳定的理想波长光束需求,结构紧凑。
-
-
-
-
-
-
-
-
-