一种面向中文医疗文本命名实体识别的方法

    公开(公告)号:CN111079377B

    公开(公告)日:2022-12-13

    申请号:CN201911223532.0

    申请日:2019-12-03

    Abstract: 本发明属于医学文本标注技术领域,具体涉及一种面向中文医疗文本命名实体识别的方法。本发明通过自定义多个实体类别并依此构建医疗术语标注词典实现了对原始医疗文本中实体的自动标注,在此基础上提出了一种多粒度特征融合的模型,首次将汉字的部首作为实体识别和分类的特征应用到医疗实体识别的任务中,通过对医疗文本中的词、字、字的部首三个不同粒度上的特征进行提取、表示和融合,并利用ID‑CNN‑CRF算法训练模型,以实现对各类医疗文本中医疗实体的识别工作。该方法的优势在于能应用在电子病历、医学期刊等各类医疗文本中,同时能较好地解决医疗领域中不同实体之间长度差异较大的问题,并且对于未登录实体的识别有着很好的效果。

    一种基于机器学习的从半结构化文档中提取问答对的方法

    公开(公告)号:CN111078875B

    公开(公告)日:2022-12-13

    申请号:CN201911222877.4

    申请日:2019-12-03

    Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于机器学习的从半结构化文档中提取问答对的方法。本发明应用机器学习的方法,通过应用Apriori进行特征选择和朴素贝叶斯分类方法进行分类,得到半结构化文本中的答案句。本发明结合命名实体识别和依存句法分析理论,将答案句转为对应的问句。命名实体识别采用crf+BiLstm神经网络模型,识别答案句中的实体,补充到网络爬取的实体中。句法分析通过揭示句子中各个词之间的依存关系,从而在问句生成时替换依存于实体的词,得到合理的问句。本发明通过从半结构化文档中提取高质量的问答对,为以后构建问答系统奠定了良好的基础。

    一种基于机器学习的从半结构化文档中提取问答对的方法

    公开(公告)号:CN111078875A

    公开(公告)日:2020-04-28

    申请号:CN201911222877.4

    申请日:2019-12-03

    Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于机器学习的从半结构化文档中提取问答对的方法。本发明应用机器学习的方法,通过应用Apriori进行特征选择和朴素贝叶斯分类方法进行分类,得到半结构化文本中的答案句。本发明结合命名实体识别和依存句法分析理论,将答案句转为对应的问句。命名实体识别采用crf+BiLstm神经网络模型,识别答案句中的实体,补充到网络爬取的实体中。句法分析通过揭示句子中各个词之间的依存关系,从而在问句生成时替换依存于实体的词,得到合理的问句。本发明通过从半结构化文档中提取高质量的问答对,为以后构建问答系统奠定了良好的基础。

    一种面向中文医疗文本命名实体识别的方法

    公开(公告)号:CN111079377A

    公开(公告)日:2020-04-28

    申请号:CN201911223532.0

    申请日:2019-12-03

    Abstract: 本发明属于医学文本标注技术领域,具体涉及一种面向中文医疗文本命名实体识别的方法。本发明通过自定义多个实体类别并依此构建医疗术语标注词典实现了对原始医疗文本中实体的自动标注,在此基础上提出了一种多粒度特征融合的模型,首次将汉字的部首作为实体识别和分类的特征应用到医疗实体识别的任务中,通过对医疗文本中的词、字、字的部首三个不同粒度上的特征进行提取、表示和融合,并利用ID-CNN-CRF算法训练模型,以实现对各类医疗文本中医疗实体的识别工作。该方法的优势在于能应用在电子病历、医学期刊等各类医疗文本中,同时能较好地解决医疗领域中不同实体之间长度差异较大的问题,并且对于未登录实体的识别有着很好的效果。

Patent Agency Ranking