一种周期调度协议下基于三轮车运动模型的状态估计方法

    公开(公告)号:CN117057159B

    公开(公告)日:2024-03-01

    申请号:CN202311169570.9

    申请日:2023-09-11

    Abstract: 本发明公开了一种周期调度协议下基于三轮车运动模型的状态估计方法,所述方法包括如下步骤:一、建立具有测量删失的三轮车运动模型;二、根据三轮车运动模型设计状态估计器;三、计算三轮车运动模型在第s时刻的一步预测误差协方差矩阵的上界Λs+1|s;四、计算三轮车运动模型在第s+1时刻的估计迭代修正矩阵Ks+1;五、将Ks+1代入二中获得第s+1时刻的估计判断s+1是否达到估计总时长U,若s+1<U,则执行六;六、计算第s+1时刻的三轮车运动模型的估计误差协方差矩阵的上界Λs+1|s+1;令s=s+1,执行二,直至达到停止条件s+1=U。本发明解决了现有状态估计方法不能处理周期调度协议下具有测量删失的非线性状态估计问题。

    一种基于放大-转发中继器的网络化预测控制方法

    公开(公告)号:CN116149178B

    公开(公告)日:2023-09-26

    申请号:CN202211582829.8

    申请日:2022-12-08

    Abstract: 本发明公开了一种基于放大‑转发中继器的网络化预测控制方法,所述方法包括如下步骤:步骤一、建立传输时延下的动态系统模型;步骤二、设计基于全维观测器的预测机制;步骤三、构造基于全维观测器的预测机制和放大‑转发中继器的预测控制器;步骤四、寻找确保动态系统在均方意义下输入‑状态稳定的准则;步骤五、求解全维观测器增益矩阵和预测控制器增益矩阵;步骤六、将全维观测器增益矩阵和预测控制器增益矩阵分别代入步骤二和步骤三中。该方法解决了现有控制方法不能应对通讯信道传输容量受限,信号难以实现远距离传输情形以及在传输过程中出现时延的网络化系统,导致信号传输的不真实、控制效果不理想甚至不稳定的问题。

    一种测量删失影响下模糊网络化系统的记忆故障检测方法

    公开(公告)号:CN117973547B

    公开(公告)日:2024-10-29

    申请号:CN202311868407.1

    申请日:2023-12-29

    Abstract: 本发明公开了一种测量删失影响下模糊网络化系统的记忆故障检测方法,所述方法包括如下步骤:步骤一、建立具有测量删失的T‑S模糊网络化系统模型;步骤二、利用受删失和记忆自适应事件触发机制影响的测量信息构造模糊故障检测滤波器结构,并得到残差动态系统;步骤三、获得保证残差动态系统有限时有界且具有H∞性能的判别依据;步骤四、求解故障检测滤波器增益;步骤五、将故障检测滤波器增益代入故障检测滤波器中,生成残差;步骤六、计算残差的评估函数和阈值,判断故障是否发生。该方法解决了现有故障检测方法不能处理的测量删失影响下的故障检测问题,能够在实现测量删失影响下的模糊网络化系统的故障检测的同时,有效节约网络资源。

    一种昆虫种群动态的预报估计方法

    公开(公告)号:CN117910622B

    公开(公告)日:2024-09-17

    申请号:CN202311847619.1

    申请日:2023-12-28

    Abstract: 本发明公开了一种昆虫种群动态的预报估计方法,所述方法包括如下步骤:一、建立昆虫种群的交互时滞不确定网络模型;二、对不确定网络模型设计预报器和估计器;三、针对第κ类昆虫种群,利用预报器计算相应的预报误差协方差矩阵上界Ψκ,ι+1|ι;步骤四、利用Ψκ,ι+1|ι优化设计估计器中的待定参数Ξκ,ι+1;五、将Ξκ,ι+1代入到估计器中,得到ι+1采样点处的估计值#imgabs0#此时,判断当前采样点ι+1与交互时滞不确定网络模型估计总采样点Z的关系,若有ι+1<Z,则执行六,否则循环结束;六、根据参数Ξκ,ι+1,计算不确定网络模型的估计误差协方差上界矩阵Ψκ,ι+1|ι+1;更新采样点令ι=ι+1,执行二,止于等式ι+1=Z成立。本发明可同时处理建模误差扰动、交互时滞和传感器异常对昆虫种群动态的影响,具有一定的鲁棒性和稳健性。

    一种复杂耦合下的两步状态估计方法

    公开(公告)号:CN115859030B

    公开(公告)日:2023-06-16

    申请号:CN202211514000.4

    申请日:2022-11-29

    Abstract: 本发明公开了一种复杂耦合下的两步估计方法,所述方法包括如下步骤:步骤一、建立复杂耦合网络状态模型、测量输出模型及恶意攻击模型;步骤二、在恶意攻击的影响下对复杂耦合网络状态进行估计;步骤三、求出每个节点的先验估计偏差的协方差上界步骤四、计算每个节点的估计器系数矩阵步骤五、将代入步骤二中的后验状态估计模型中,得到后验估计判断t+1时刻与总时长T的关系,若t+1<T,则执行步骤六,若t+1=T,则结束;步骤六、根据计算出每个节点的后验估计偏差协方差上界令t=t+1,执行步骤二,直至满足t+1=T。本发明解决了在随机发生耦合和非线性耦合偏差影响下导致估计方法准确率降低的问题,以及在部分节点测量值未知且受恶意攻击时不能估计节点状态的问题。

    一种基于传感器网络的定位系统分布式滤波方法

    公开(公告)号:CN118157630B

    公开(公告)日:2024-08-02

    申请号:CN202410184673.0

    申请日:2024-02-19

    Abstract: 本发明公开了一种基于传感器网络的定位系统分布式滤波方法,所述方法如下:一、建立定位系统动态模型;二、设计分布式滤波器;三、计算传感器网络中第i个传感器节点在r时刻的一步预测误差协方差矩阵上界∑i,r+1|r;四、计算第i个传感器节点在r+1时刻的滤波器增益矩阵Ki,r+1;五、将Ki,r+1代入到分布式滤波器中,获得第i个传感器节点在r+1时刻的状态估计#imgabs0#判断r+1时刻是否达到总时长T,若r+1<T,则执行六;六、计算第i个传感器节点在r+1时刻的滤波误差协方差矩阵上界∑i,r+1|r+1;令r=r+1,执行二,直到满足r+1=T。本发明解决了基于传感器网络的在自适应事件触发机制以及瑞利衰落信道下的具有随机切换非线性、状态饱和的定位系统分布式滤波问题。

    一种测量删失影响下模糊网络化系统的记忆故障检测方法

    公开(公告)号:CN117973547A

    公开(公告)日:2024-05-03

    申请号:CN202311868407.1

    申请日:2023-12-29

    Abstract: 本发明公开了一种测量删失影响下模糊网络化系统的记忆故障检测方法,所述方法包括如下步骤:步骤一、建立具有测量删失的T‑S模糊网络化系统模型;步骤二、利用受删失和记忆自适应事件触发机制影响的测量信息构造模糊故障检测滤波器结构,并得到残差动态系统;步骤三、获得保证残差动态系统有限时有界且具有H∞性能的判别依据;步骤四、求解故障检测滤波器增益;步骤五、将故障检测滤波器增益代入故障检测滤波器中,生成残差;步骤六、计算残差的评估函数和阈值,判断故障是否发生。该方法解决了现有故障检测方法不能处理的测量删失影响下的故障检测问题,能够在实现测量删失影响下的模糊网络化系统的故障检测的同时,有效节约网络资源。

    一种周期调度协议下基于三轮车运动模型的状态估计方法

    公开(公告)号:CN117057159A

    公开(公告)日:2023-11-14

    申请号:CN202311169570.9

    申请日:2023-09-11

    Abstract: 本发明公开了一种周期调度协议下基于三轮车运动模型的状态估计方法,所述方法包括如下步骤:一、建立具有测量删失的三轮车运动模型;二、根据三轮车运动模型设计状态估计器;三、计算三轮车运动模型在第s时刻的一步预测误差协方差矩阵的上界Λs+1|s;四、计算三轮车运动模型在第s+1时刻的估计迭代修正矩阵Ks+1;五、将Ks+1代入二中获得第s+1时刻的估计#imgabs0#判断s+1是否达到估计总时长U,若s+1<U,则执行六;六、计算第s+1时刻的三轮车运动模型的估计误差协方差矩阵的上界Λs+1|s+1;令s=s+1,执行二,直至达到停止条件s+1=U。本发明解决了现有状态估计方法不能处理周期调度协议下具有测量删失的非线性状态估计问题。

    一种网络调度策略下具有数据衰减的分布式融合估计方法

    公开(公告)号:CN115865702B

    公开(公告)日:2023-05-09

    申请号:CN202211430178.0

    申请日:2022-11-15

    Abstract: 本发明公开了一种网络调度策略下具有数据衰减的分布式融合估计方法,所述方法包括如下步骤:步骤一、建立具有数据衰减现象的随机非线性时滞系统的传感器网络动态模型;步骤二、对传感器网络动态模型进行状态估计;步骤三、计算一步预测误差协方差矩阵上界∑i,k+1|k;步骤四、计算估计迭代修正矩阵Ki,k+1;步骤五、将Ki,k+1代入步骤二中,得到状态估计判断k+1是否达到传感器网络总时长M,若k+1<M,则执行步骤六,若k+1=M,则结束;步骤六、计算估计误差协方差矩阵上界∑i,k+1|k+1;步骤七、计算融合估计和融合估计误差协方差矩阵∑0k+1|k+1;令k=k+1,返回执行步骤二,直至满足k+1=M。本发明解决了现有方法存在数据衰减现象和网络带宽受限时,不完全的测量信息传输到估计器时,导致其融合估计精度低的问题。

    一种基于传感器网络的定位系统分布式滤波方法

    公开(公告)号:CN118157630A

    公开(公告)日:2024-06-07

    申请号:CN202410184673.0

    申请日:2024-02-19

    Abstract: 本发明公开了一种基于传感器网络的定位系统分布式滤波方法,所述方法如下:一、建立定位系统动态模型;二、设计分布式滤波器;三、计算传感器网络中第i个传感器节点在r时刻的一步预测误差协方差矩阵上界∑i,r+1|r;四、计算第i个传感器节点在r+1时刻的滤波器增益矩阵Ki,r+1;五、将Ki,r+1代入到分布式滤波器中,获得第i个传感器节点在r+1时刻的状态估计#imgabs0#判断r+1时刻是否达到总时长T,若r+1<T,则执行六;六、计算第i个传感器节点在r+1时刻的滤波误差协方差矩阵上界∑i,r+1|r+1;令r=r+1,执行二,直到满足r+1=T。本发明解决了基于传感器网络的在自适应事件触发机制以及瑞利衰落信道下的具有随机切换非线性、状态饱和的定位系统分布式滤波问题。

Patent Agency Ranking