-
公开(公告)号:CN110516613B
公开(公告)日:2023-04-18
申请号:CN201910807214.2
申请日:2019-08-29
Applicant: 大连海事大学
Abstract: 本发明公开了一种第一视角下的行人轨迹预测方法,采用编解码结构结合循环卷积网络来预测第一视角下行人轨迹策略。原始图像经过编码得到的行人轨迹信息的特征向量,然后进行解码特征向量,预测出未来的行人的轨迹信息。在公共数据集和自己采集到的数据集里,本发明都会准确的预测出多个行人的未来10帧的轨迹信息,最终预测轨迹和最终实际轨迹之间的L2距离误差提高到40,比现有方法提高了30个像素精度。本发明提出了预测行人轨迹的时空卷积循环网络方法,利用一维卷积进行编解码处理,通过时空卷积网络预测,在目前的相关方法中,实现较简单、数据获取和处理清晰、简洁,实用性强。
-
公开(公告)号:CN110503073A
公开(公告)日:2019-11-26
申请号:CN201910807587.X
申请日:2019-08-29
Applicant: 大连海事大学
Abstract: 本发明公开了一种第三视角下动态链接的密集多智能体轨迹预测方法,利用变分自编码器视觉组件进行数据压缩;输入轨迹帧X进入动态循环单元完成编码网络功能;对于编码的数据进行解码。本发明不仅能根据卷积核采样点的动态变化模拟到多智能体流体时空运动,而且能够提取多智能体所处位置的空间特征,并能根据数据学习到具体在特征图上采样那些像素点,减少了空间特征冗余。本发明采用数据驱动的方式根据固定卷积核在特征图上学习到权重,然后采用sigmoid函数对学习到的权重值操作,得到时空数据的采样幅度,更加符合客观采样规律,提高模型泛化能力。本发明无需采用智能体轨迹点,可以实现多步预测、提高模型泛化能力,减少了计算复杂度。
-
公开(公告)号:CN110503073B
公开(公告)日:2023-04-18
申请号:CN201910807587.X
申请日:2019-08-29
Applicant: 大连海事大学
IPC: G06V20/52 , G06V10/82 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种第三视角下动态链接的密集多智能体轨迹预测方法,利用变分自编码器视觉组件进行数据压缩;输入轨迹帧X进入动态循环单元完成编码网络功能;对于编码的数据进行解码。本发明不仅能根据卷积核采样点的动态变化模拟到多智能体流体时空运动,而且能够提取多智能体所处位置的空间特征,并能根据数据学习到具体在特征图上采样那些像素点,减少了空间特征冗余。本发明采用数据驱动的方式根据固定卷积核在特征图上学习到权重,然后采用sigmoid函数对学习到的权重值操作,得到时空数据的采样幅度,更加符合客观采样规律,提高模型泛化能力。本发明无需采用智能体轨迹点,可以实现多步预测、提高模型泛化能力,减少了计算复杂度。
-
公开(公告)号:CN110516613A
公开(公告)日:2019-11-29
申请号:CN201910807214.2
申请日:2019-08-29
Applicant: 大连海事大学
Abstract: 本发明公开了一种第一视角下的行人轨迹预测方法,采用编解码结构结合循环卷积网络来预测第一视角下行人轨迹策略。原始图像经过编码得到的行人轨迹信息的特征向量,然后进行解码特征向量,预测出未来的行人的轨迹信息。在公共数据集和自己采集到的数据集里,本发明都会准确的预测出多个行人的未来10帧的轨迹信息,最终预测轨迹和最终实际轨迹之间的L2距离误差提高到40,比现有方法提高了30个像素精度。本发明提出了预测行人轨迹的时空卷积循环网络方法,利用一维卷积进行编解码处理,通过时空卷积网络预测,在目前的相关方法中,实现较简单、数据获取和处理清晰、简洁,实用性强。
-
-
-