基于频域分解及人工智能算法的短期负荷预测方法

    公开(公告)号:CN109934418A

    公开(公告)日:2019-06-25

    申请号:CN201910243384.2

    申请日:2019-03-28

    Applicant: 安徽大学

    Abstract: 本发明针对现有的短期负荷预测方法都存在预测方法较为单一,预测精度不高的问题,提供一种基于频域分解及人工智能算法的短期负荷预测方法。该方法,包括:用频域分解算法对原始负荷数据的负荷时间序列进行分解,获得日周期分量、周周期分量、低频分量和高频分量;采用神经网络算法对日周期和周周期进行预测;采用随机森林算法对低频分量进行预测;对高频分量进行二次分解,对分解后的低频部分采用神经网络算法进行预测。本发明所提的基于频域分解的短期负荷预测模型,预测结果与Elman神经网络、随机森林预测结果相比具有更高的预测精度。

    一种基于IRF和ODBSCAN的电力负荷频域预测方法及系统

    公开(公告)号:CN112016732A

    公开(公告)日:2020-12-01

    申请号:CN202010209920.X

    申请日:2020-03-23

    Abstract: 本发明的一种基于IRF和ODBSCAN的电力负荷频域预测方法及系统,可解决现有方法误差较大的技术问题。本发明提出基于改进的随机森林IRF(Improved Random Forest)和ODBSCAN(Optimized Density-Based Spatial Clustering of Applications with Noise)的频域组合预测方法。首先,采用EWT(Empirical Wavelet Transform)分解负荷,得到不同的固有模态分量IMFs(Intrinsic Mode Functions);其次,根据各分量特征采用合理的方法进行预测。其中,低频、中频分量采用IRF预测;高频分量具有不确定性,使用ODBSCAN根据气象因素温度和湿度聚类,再根据每类的样本特性选择处理方法。最后,叠加各分量的预测值,获取总的预测结果。根据某地市现场负荷数据进行实验,预测结果分别与EWT-IRF、EWT-RF(Random Forest)、EMD(Empirical Mode Decomposition)-IRF模型的预测结果进行对比,可以获得更佳的预测效果,体现实际负荷的变化规律。

Patent Agency Ranking