基于频域分解及人工智能算法的短期负荷预测方法

    公开(公告)号:CN109934418A

    公开(公告)日:2019-06-25

    申请号:CN201910243384.2

    申请日:2019-03-28

    Applicant: 安徽大学

    Abstract: 本发明针对现有的短期负荷预测方法都存在预测方法较为单一,预测精度不高的问题,提供一种基于频域分解及人工智能算法的短期负荷预测方法。该方法,包括:用频域分解算法对原始负荷数据的负荷时间序列进行分解,获得日周期分量、周周期分量、低频分量和高频分量;采用神经网络算法对日周期和周周期进行预测;采用随机森林算法对低频分量进行预测;对高频分量进行二次分解,对分解后的低频部分采用神经网络算法进行预测。本发明所提的基于频域分解的短期负荷预测模型,预测结果与Elman神经网络、随机森林预测结果相比具有更高的预测精度。

    基于深度学习网络模型的电磁逆散射成像方法

    公开(公告)号:CN117973456B

    公开(公告)日:2024-07-02

    申请号:CN202410370266.9

    申请日:2024-03-29

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于深度学习网络模型的电磁逆散射成像方法,包括:数据预处理阶段:将复数数据的实部与虚部分别放入两个矩阵中;深度学习网络模型的构建以及训练测试阶段,其中,训练阶段包括以电场数据作为深度学习网络(EIS‑Net)的输入,相对介电常数数据作为输出,训练模型;测试分析阶段包括将测试集输入模型,得到相对介电常数实部与虚部的矩阵,通过表示相对介电常数实部的矩阵可以得到色散介质与普通介质的形状与位置信息,通过表示虚部的矩阵可以对二者进行区分。本发明利用基于残差结构的深度学习网络对混合介质的参数进行重构,在得到色散介质与普通介质形状与位置信息的同时能够对二者进行有效区分,提高了识别效率与准确率。

    基于深度学习网络模型的电磁逆散射成像方法

    公开(公告)号:CN117973456A

    公开(公告)日:2024-05-03

    申请号:CN202410370266.9

    申请日:2024-03-29

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于深度学习网络模型的电磁逆散射成像方法,包括:数据预处理阶段:将复数数据的实部与虚部分别放入两个矩阵中;深度学习网络模型的构建以及训练测试阶段,其中,训练阶段包括以电场数据作为深度学习网络(EIS‑Net)的输入,相对介电常数数据作为输出,训练模型;测试分析阶段包括将测试集输入模型,得到相对介电常数实部与虚部的矩阵,通过表示相对介电常数实部的矩阵可以得到色散介质与普通介质的形状与位置信息,通过表示虚部的矩阵可以对二者进行区分。本发明利用基于残差结构的深度学习网络对混合介质的参数进行重构,在得到色散介质与普通介质形状与位置信息的同时能够对二者进行有效区分,提高了识别效率与准确率。

    一种机理模型嵌入的深度学习光伏短期预测方法

    公开(公告)号:CN117277271A

    公开(公告)日:2023-12-22

    申请号:CN202311009525.7

    申请日:2023-08-09

    Abstract: 本发明涉及一种机理模型嵌入的深度学习光伏短期预测方法,包括:采用Softsign函数替换LSTM模型的tanh函数,采用CSS函数替换LSTM模型的sigmoid函数,得到改进的LSTM模型;将单二极管模型和改进的LSTM模型结合,得到Diode‑LSTM模型,使用历史数据训练Diode‑LSTM模型,得到训练好的Diode‑LSTM模型,使用训练好的Diode‑LSTM模型对未来一段时间内的光伏发电系统输出功率进行预测;将预测的输出功率与实际输出功率进行比较,评估预测的准确性,并根据需要进行调整和优化。本发明具有更好的梯度传递,Softsign函数的梯度在输入接近于0的时候更加平缓,因此可以更好地传递梯度,避免梯度消失或爆炸的问题,具有更快的收敛速度,具有更好的鲁棒性和更好的泛化能力,可以更好地适应不同的数据集和任务。

Patent Agency Ranking