适用于视频图像中显著人体实例分割的方法

    公开(公告)号:CN109035293B

    公开(公告)日:2022-07-15

    申请号:CN201810498274.6

    申请日:2018-05-22

    Applicant: 安徽大学

    Abstract: 为了解决现有技术的不足,本发明提供一种适用于视频图像中显著人体实例分割的方法:将视频序列中运动目标的运动持续性和时空结构一致性引入,实现基于此两者约束的一种将光流聚类、显著性检测和多特征投票相结合的人体实例分割方法。对于运动连续性,采用基于光流区域聚类的前景目标概率计算策略,即基于光流特征对区域进行聚类并以区域面积大小为权重计算前景概率,对于时空结构一致性,我们提出采用以融合显著性检测和基于粗轮廓的多特征投票策略,并结合显著性检测、区域邻帧光利差相,对具有完整轮廓的目标前景进行像素级别上的能量约束优化,从而实现未被遮挡的移动行人的实例分割。

Patent Agency Ranking