一种CuO-TiO2复合微米管、制备方法及其应用

    公开(公告)号:CN109133145B

    公开(公告)日:2020-09-11

    申请号:CN201810853297.4

    申请日:2018-10-15

    Applicant: 长安大学

    Abstract: 本发明公开了一种CuO‑TiO2复合微米管、制备方法及其应用,所述的CuO‑TiO2复合微米管中CuO与TiO2的摩尔比为1:1~5,所述的CuO‑TiO2复合微米管的直径为15~22μm,壁厚为1~3μm;所述的CuO‑TiO2复合微米管的比表面积为120~140m2/g。在材料性能上,由于溶胶凝胶浸渍反应是连续地发生在生物模板表面,促进了两种材料复合过程中的高效结合和晶粒的均匀分布,有助于复合材料的稳定性和性能的充分提升。本方法制备得到的中空复合微纳米材料结构稳定,能保持较好的中空结构,具有低密度、高比表面积等特点,具有优异的应用效果。

    生物碳球负载钼酸亚铁Fenton催化剂、制备方法及应用

    公开(公告)号:CN105056965B

    公开(公告)日:2017-11-28

    申请号:CN201510426858.9

    申请日:2015-07-20

    Applicant: 长安大学

    Abstract: 本发明公开了一种生物碳球负载的钼酸亚铁Fenton催化剂、制备方法及应用,该催化剂为核壳结构的微米球,微米球的核为酵母细胞转化得到的生物碳球,微米球的外壳为钼酸亚铁层。本发明以价格低廉的酵母细胞作为生物碳球的来源,采用四水合氯化亚铁、二水合钼酸钠为主要原料,通过环境友好的反应及生成环境制得具有核壳结构的生物碳球负载钼酸亚铁Fenton催化剂粉体材料,通过本发明的方法所制备的生物碳球负载钼酸亚铁Fenton催化剂在亚甲基蓝模拟染料废水的降解中表现出优异的催化降解性能。

    单层纳米TiO2@酵母碳球的自组装合成方法及其应用

    公开(公告)号:CN106914231B

    公开(公告)日:2019-05-31

    申请号:CN201710047109.4

    申请日:2017-01-22

    Applicant: 长安大学

    Abstract: 本发明提供了一种单层纳米TiO2@酵母碳球的自组装合成方法,用活性Con A对纳米TiO2粒子进行生物修饰,在适当的配比浓度和自组装环境条件下,通过纳米TiO2表面的Con A与酵母细胞壁上甘露聚糖的特异性识别和结合,定向地将纳米TiO2引导并锚定在细胞壁表面,实现酵母细胞壁上纳米TiO2的单层自组装。将单层纳米TiO2@酵母细胞的自组装产物在氮气保护下进行煅烧,内部的酵母细胞转化为碳球,从而得到单层纳米TiO2@酵母碳球。本发明克服了功能性纳米粒子在生物载体表面自组装负载中可控性差的缺陷,通过简单步骤实现功能性纳米粒子在生物碳材料表面的单层致密排列和高效负载,所制得的单层纳米TiO2@酵母碳球具有较强的光催化性,是一种优异的生物碳负载型光催化剂。

    一种CuO-TiO2复合微米管、制备方法及其应用

    公开(公告)号:CN109133145A

    公开(公告)日:2019-01-04

    申请号:CN201810853297.4

    申请日:2018-10-15

    Applicant: 长安大学

    Abstract: 本发明公开了一种CuO‑TiO2复合微米管、制备方法及其应用,所述的CuO‑TiO2复合微米管中CuO与TiO2的摩尔比为1:1~5,所述的CuO‑TiO2复合微米管的直径为15~22μm,壁厚为1~3μm;所述的CuO‑TiO2复合微米管的比表面积为120~140m2/g。在材料性能上,由于溶胶凝胶浸渍反应是连续地发生在生物模板表面,促进了两种材料复合过程中的高效结合和晶粒的均匀分布,有助于复合材料的稳定性和性能的充分提升。本方法制备得到的中空复合微纳米材料结构稳定,能保持较好的中空结构,具有低密度、高比表面积等特点,具有优异的应用效果。

    一种植物中空纤维负载的类Fenton催化剂、制备方法及其应用

    公开(公告)号:CN105056949B

    公开(公告)日:2017-10-13

    申请号:CN201510482108.3

    申请日:2015-08-03

    Applicant: 长安大学

    Abstract: 本发明公开了一种植物中空纤维负载的类Fenton催化剂、制备方法及其应用,包括载体和负载于载体上的催化剂;所述的载体为植物中空纤维,所述的催化剂为非均相类Fenton催化剂;创新性地选用了悬铃木果毛纤维为非均相类Fenton催化剂的载体来源,该纤维是天然可再生资源,来源广泛,易生物降解,作为类Fenton催化剂的载体并应用于水体中污染物的降解,实现了复合材料设计和应用层面的以废治废,绿色环保;通过简单的步骤和温和的实验条件所得到的悬铃木果毛纤维负载四氧化三铁类Fenton催化剂,对亚甲基蓝模拟染料废水的催化效果优异,实验数据证实该材料的重复利用率高,具有广阔的应用前景。

    一种基于磁性分子印迹的超声辅助选择性光催化装置

    公开(公告)号:CN207986743U

    公开(公告)日:2018-10-19

    申请号:CN201721744867.3

    申请日:2017-12-14

    Applicant: 长安大学

    Abstract: 本实用新型公开了一种基于磁性分子印迹的超声辅助选择性光催化装置,该装置包括吸附池(1)、磁性悬臂和光催化降解池(15),磁性分子印迹材料先在吸附池(1)中对目标有机污染物进行吸附,之后通过磁性悬臂的磁性吸附力将吸附池中(1)吸附了目标有机污染物的磁性分子印迹材料转移到光催化降解池(15)中进行光催化降解;光催化降解池(15)中完成了光催化降解后的磁性分子印迹材料再在磁性悬臂的磁性吸附力下重新转移到吸附池(1)中,如此往复上述操作直至完成吸附池(1)中目标有机污染物的高效去除。

Patent Agency Ranking