-
公开(公告)号:CN107066554A
公开(公告)日:2017-08-18
申请号:CN201710183767.6
申请日:2017-03-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种微博相关人物推荐方法,包括:步骤一、微博用户识别:解析当前用户所有博文中的多个关键字以及每个关键字的权重Wki;获取至少一篇相匹配博文,相匹配的博文具有所述多个关键字,获取各相匹配博文的微博主,再获取各微博主对多个关键字中各关键字的权重UWki;步骤二、相关用户过滤:从所获取的微博主中筛选掉已经被当前用户关注的微博主,从而获得至少一个相关用户;步骤三、用户相关性权重计算:依据相关性权重公式计算每个相关用户的相关性权重;步骤四、根据所述至少一个相关用户的相关性权重,将相关性权重排名在排序规定值之前的相关用户推荐给当前用户。本发明可以使用户更加方便直接地关注自己感兴趣的内容和微博人物。
-
公开(公告)号:CN106980692A
公开(公告)日:2017-07-25
申请号:CN201710213302.0
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于微博特定事件的影响力计算方法,属于社交网络分析及数据挖掘技术领域。本发明依据传播学中事件发展的五个阶段对特定事件进行了相关分析划分并应用于影响力计算中,主要针对微博文本数据及基础的用户数据进行统计处理与自然语言处理,计算传播角度和内容角度兼顾的六项影响力指标,并使用K‑means机器学习算法对子话题进行划分;最终得出特定事件的影响力热度指数EII、事件内的用户影响力排行榜、消息影响力排行榜。对比现有技术,本发明考虑微博文本的内容指标,较全面而准确地反映了事件各方面的信息,具有很强的现实意义和实用价值。此外,本发明方法计算的时空耗费不高,易于模块化,可投入大规模的数据计算,具有较好的稳定性。
-
公开(公告)号:CN106557552A
公开(公告)日:2017-04-05
申请号:CN201610958001.6
申请日:2016-10-27
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种网络话题热度预测方法。它包括话题检测、热度预测建模、预测热度值计算三个步骤。话题检测部分负责从网络数据中获取与用户给定话题关键词相关的话题数据。预测建模部分按照用户设定的时间粒度大小统计话题检测结果中每个时间段内的话题热度值,并计算高斯过程模型关于话题热度统计时间点的协方差矩阵,构建基于高斯过程的预测模型。预测热度值计算部分针对用户给定的预测时间点,利用构建的高斯过程模型计算话题在给定时间点的热度值。本发明综合利用信息检索技术、分类技术进行话题检测,利用高斯过程模型来进行话题热度预测,提高了话题预测的实用性和有效性。
-
公开(公告)号:CN106202047A
公开(公告)日:2016-12-07
申请号:CN201610559542.1
申请日:2016-07-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明公开了一种基于微博文本的人物性格刻画方法,属于数据挖掘领域;具体包括:首先,针对某个用户,对该用户某段时间内发的每条微博文本标注情绪标签,统计该用户每天冲动类以及抑郁类情绪的主导天数,从情绪特征角度对用户进行标记;然后,对该用户的所有微博文本进行关注话题分类,并选择该用户的关注话题;判断该用户的关注话题是否包括政治类和民生类,如果有,利用批判性词典对该用户进行语言特征刻画;否则,不做任何处理;最后、融合该用户的情绪特征和语言特征刻画该用户的性格,得到性格标签。优点在于:适用于对微博中人物性格特征刻画和分析,在舆情监控、人物属性刻画和信息传播扩散等领域有重要的应用价值。
-
公开(公告)号:CN106156150A
公开(公告)日:2016-11-23
申请号:CN201510175964.4
申请日:2015-04-14
Applicant: 北大方正集团有限公司 , 北京大学 , 国家计算机网络与信息安全管理中心 , 北京北大方正电子有限公司
IPC: G06F17/30
Abstract: 本发明公开了一种微博用户关联信息筛选方法及装置,用以解决现有技术中存在的数据稀疏的问题,以及推荐效果不理想,降低系统推荐效率的问题,该方法包括:首先确定当前用户的关联用户集合、特征向量、以及社区结构和主题;根据该每一个关联用户对应的特征向量中的每一个特征项和每一个社区结构对应的主题,得到用户主题分布;根据用户主题分布,筛选出当前用户的目标关联用户,这样,可以避免了推荐结果数据稀疏的问题,提高了系统的推荐效率,并得到与当前用户的兴趣爱好一致的关联用户。
-
公开(公告)号:CN103761239B
公开(公告)日:2016-10-26
申请号:CN201310664725.6
申请日:2013-12-09
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种根据表情符号对微博进行情感倾向分类的方法,包括:创建中性情感集、消极情感集和积极情感集;利用中性情感集、消极情感集和积极情感集,建立中性情感贝叶斯分类器;利用由消极情感集和积极情感集,建立极性情贝叶斯情感分类器;利用中性情感贝叶斯分类器和极性情感贝叶斯分类器对待测微博进行情感分类。本发明通过建立一个两阶段分类,即建立中性情感分类器,把中性情感的微博剔除,建立极性情感分类器,将有极性情感的微博分为积极情感和消极情感,该分类器分类速度快、占用空间小且鲁棒,且本发明能通过微博准确的了解到人们对当前的热门话题或事件的态度和网民的情绪,对社会科研和调查有着重要的帮助。
-
公开(公告)号:CN105808525A
公开(公告)日:2016-07-27
申请号:CN201610186810.X
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
CPC classification number: G06F17/271 , G06F17/2705 , G06F17/274 , G06F17/2785
Abstract: 本发明提供一种基于相似概念对的领域概念上下位关系抽取方法,包括以下步骤:步骤1,领域概念集合由若干个领域概念组成;基于概念聚类的方法从领域概念集合中抽取相似的领域概念;步骤2,获得可能存在上下位关系的候选概念对,然后根据步骤1获取的相似概念产生相似候选概念对;步骤3,利用知识库获取部分训练数据,并通过相似候选概念对共同表征关系特征,实现基于多句特征的关系抽取,从而抽取到领域概念上下位关系。优点为:本发明可以突破语料规模的限制,利用多句特征抽取领域概念的上下位关系,可提升领域概念上下位关系抽取的准确率。
-
公开(公告)号:CN105205146A
公开(公告)日:2015-12-30
申请号:CN201510600289.5
申请日:2015-09-18
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/3089
Abstract: 本发明公开了一种计算微博用户影响力的方法,属于数据挖掘领域,具体步骤如下:一、收集每日的微博流数据;步骤二、服务器将微博流数据平均分发到多个端口;步骤三、对流数据进行特征提取和并行计算;步骤四、将特征存储;步骤五、过滤不关心用户;步骤六、计算用户影响力;步骤七、存储每日每个用户的影响力。优点在于:该影响力的指标增加了平均数、最高数和爆发度,平均数要求用户发布的每条微博的平均影响力都比较高,避免出现微博数大造成转发量或评论量大,最高数和爆发度分别刻画影响力传播的范围和速度,因此,新增加的指标克服以往指标中存在单一总数不能完整刻画用户影响力的缺陷,能够更深入的解释用户影响力高的原因。
-
公开(公告)号:CN104778209A
公开(公告)日:2015-07-15
申请号:CN201510111752.X
申请日:2015-03-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种针对千万级规模新闻评论的观点挖掘方法。具体步骤如下:1)、统计千万级规模新闻评论的数量;2)、判断该数量是否大于或等于阈值K,如果是不予处理,否则进入步骤三;3)、利用中文分词工具,对数量小于阈值K的新闻标题和评论进行分词,进行词性标注;4)、根据分词结果对新闻评论聚类,得到类别标签;5)、对新闻评论进行关键词对提取;6)、统计新闻评论的比例和混杂度;7)、根据关键词对筛选并提取代表性文本。本发明利用中文分词工具,考虑汉语语言的用法和搭配关系,结合新闻标题的作用,处理千万级规模的新闻评论,具有高效性、鲁棒性和易用性等优点。
-
公开(公告)号:CN103678565A
公开(公告)日:2014-03-26
申请号:CN201310659722.3
申请日:2013-12-09
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
CPC classification number: G06F17/30666 , G06F17/30737
Abstract: 一种基于自引导方式的领域自适应句子对齐系统,包括:网页处理模块,中文文本处理模块,英文文本处理模块和双语文处理模块。首先,针对不同的网页,对于料进行提取和相应做预处理;使用一种基于自引导的方式并融合多种特征的句子对齐算法对中英文进行句子级的对齐;同时,对可能能够反映相关领域信息和主题信息的互译词对进行提取。本发明提高了句子对齐质量,具有领域适应性强的优点。
-
-
-
-
-
-
-
-
-