-
公开(公告)号:CN109977287B
公开(公告)日:2021-02-02
申请号:CN201910242011.3
申请日:2019-03-28
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/951 , G06F16/9535 , G06F16/2458 , G06F16/215 , G06Q50/16
Abstract: 本发明涉及一种不同信息源的房产数据同一性判别方法,属于互联网数据分析与挖掘技术领域。所述同一性判别方法基于链家、我爱我家、中原、麦田网站公布的房屋数据及其相关性;通过分析房屋数据的特点,通过区域去重、小区去重以及房屋去重的三大步骤剔除重复的房屋数据,所述房屋数据是对实际的房屋客体的特点描述,虽然描述的角度和方式存在差异,但数据之间存在很强的相关性。所述方法能对来源于不同网站的房屋数据去重,能够准确、高效的对来源于不同信息源的房屋数据的同一性判别,并能有效去除重复区域、小区,可以实现面向多源异构的房屋数据的有效融合,为房地产市场分析提供“干净”,“整齐”的数据。
-
公开(公告)号:CN113221542A
公开(公告)日:2021-08-06
申请号:CN202110348599.8
申请日:2021-03-31
Applicant: 国家计算机网络与信息安全管理中心 , 北京理工大学
IPC: G06F40/232 , G06F40/242 , G06F40/284
Abstract: 本发明涉及一种基于多粒度融合与Bert筛选的中文文本自动校对方法,属于自然语言处理技术领域;本发明通过结合字粒度与词粒度级别的校对模型,以期能够利用不同粒度级别的信息。字粒度模型采用集成规则生成候选集与Bert筛选的方法,词粒度采用传统方法,先构建候选集,然后使用N‑Gram模型计算句子困惑度取最佳候选。另外该方法还解决了多字少字等错误类型问题。实验结果验证了该方法能有效提高检错纠错的召回率,有效提升校对模型性能。对比现有技术,本发明规避了字粒度校对模型和词粒度校对模型带来的局限性,基于多粒度融合与Bert筛选通过两种粒度有效结合不同层次信息,通过N‑Gram LM打分与Bert进行筛选,能够有效提高错误的召回率和校对的准确率。
-
公开(公告)号:CN109977287A
公开(公告)日:2019-07-05
申请号:CN201910242011.3
申请日:2019-03-28
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/951 , G06F16/9535 , G06F16/2458 , G06F16/215 , G06Q50/16
Abstract: 本发明涉及一种不同信息源的房产数据同一性判别方法,属于互联网数据分析与挖掘技术领域。所述同一性判别方法基于链家、我爱我家、中原、麦田网站公布的房屋数据及其相关性;通过分析房屋数据的特点,通过区域去重、小区去重以及房屋去重的三大步骤剔除重复的房屋数据,所述房屋数据是对实际的房屋客体的特点描述,虽然描述的角度和方式存在差异,但数据之间存在很强的相关性。所述方法能对来源于不同网站的房屋数据去重,能够准确、高效的对来源于不同信息源的房屋数据的同一性判别,并能有效去除重复区域、小区,可以实现面向多源异构的房屋数据的有效融合,为房地产市场分析提供“干净”,“整齐”的数据。
-
公开(公告)号:CN106940732A
公开(公告)日:2017-07-11
申请号:CN201710212983.9
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种面向微博数据的疑似水军发现方法,属于计算机应用技术领域。本发明共分为以下六个步骤,分别为相关微博数据的采集;数据预处理;用户特征提取;构建训练集;训练水军检测模型;预测判别未标注数据。对比现有技术,本发明实现了数据的充分利用,方便快捷的进行群体发现而不用建立复杂的分类检测模型,从而降低了算法的复杂度,并且算法的模块性较高,可以投入大规模数据计算,具有较高的稳定性;本发明除了可以对单一用户进行水军检测,还可以对某一特定事件中的一批用户进行识别,该方法模块性极强,可以稳定适用于大规模数据计算框架下。
-
公开(公告)号:CN106980692A
公开(公告)日:2017-07-25
申请号:CN201710213302.0
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于微博特定事件的影响力计算方法,属于社交网络分析及数据挖掘技术领域。本发明依据传播学中事件发展的五个阶段对特定事件进行了相关分析划分并应用于影响力计算中,主要针对微博文本数据及基础的用户数据进行统计处理与自然语言处理,计算传播角度和内容角度兼顾的六项影响力指标,并使用K‑means机器学习算法对子话题进行划分;最终得出特定事件的影响力热度指数EII、事件内的用户影响力排行榜、消息影响力排行榜。对比现有技术,本发明考虑微博文本的内容指标,较全面而准确地反映了事件各方面的信息,具有很强的现实意义和实用价值。此外,本发明方法计算的时空耗费不高,易于模块化,可投入大规模的数据计算,具有较好的稳定性。
-
公开(公告)号:CN116186191A
公开(公告)日:2023-05-30
申请号:CN202210320305.5
申请日:2022-03-29
Applicant: 国家计算机网络与信息安全管理中心 , 北京理工大学
Abstract: 本发明涉及基于多维信息的任务匹配方法,属于基于大数据智能分析与挖掘技术领域。本发明是结合文本处理、机器学习方法、线性模型、动态规划等方法对相应文本进行处理,从而对文本所含“价值”进行分析,并借助大数据的手段将人工主观文本分析变为自动化完成,提高系统找到匹配结果的效率。本发明采用多种大数据分析的思想和多路召回的思想,对于同一任务会召回多个表单,每一个表单进行同样的操作,设置不同的权重,最后多路交集,从而可以取到更加准确的筛选结果,大大提高了工作效率。
-
公开(公告)号:CN106980692B
公开(公告)日:2020-12-08
申请号:CN201710213302.0
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/9536 , G06Q50/00
Abstract: 本发明涉及一种基于微博特定事件的影响力计算方法,属于社交网络分析及数据挖掘技术领域。本发明依据传播学中事件发展的五个阶段对特定事件进行了相关分析划分并应用于影响力计算中,主要针对微博文本数据及基础的用户数据进行统计处理与自然语言处理,计算传播角度和内容角度兼顾的六项影响力指标,并使用K‑means机器学习算法对子话题进行划分;最终得出特定事件的影响力热度指数EII、事件内的用户影响力排行榜、消息影响力排行榜。对比现有技术,本发明考虑微博文本的内容指标,较全面而准确地反映了事件各方面的信息,具有很强的现实意义和实用价值。此外,本发明方法计算的时空耗费不高,易于模块化,可投入大规模的数据计算,具有较好的稳定性。
-
-
-
-
-
-