高浓度醇的制造方法
    11.
    发明授权

    公开(公告)号:CN110234620B

    公开(公告)日:2022-08-26

    申请号:CN201880008895.X

    申请日:2018-01-29

    Abstract: 本发明的课题在于,在使用蒸馏塔、吸附解吸塔的高浓度醇的制造方法中提高醇的生产能力。一种高浓度醇的制造方法,其为将水‑醇混合液脱水而制造高浓度醇的方法,该制造方法具有下述工序:将水‑醇混合液导入蒸馏塔中而得到粗醇的蒸馏工序;以及将该粗醇的一部分导入吸附解吸塔中而得到高浓度醇的吸附解吸工序,将上述粗醇的另一部分导入脱水装置中而得到高浓度醇。

    高浓度醇的制造方法
    12.
    发明授权

    公开(公告)号:CN106795075B

    公开(公告)日:2020-11-24

    申请号:CN201580052753.X

    申请日:2015-06-29

    Abstract: 本发明的目的在于提供一种工艺整体高效的、由水‑醇混合物制造高浓度的醇的方法。本发明涉及一种高浓度醇的制造方法,其具有下述工序:使水‑醇混合物的水吸附到吸附塔中而得到第一浓缩醇的水吸附工序;接着导入醇而得到含水醇的水解吸工序;以及,将上述含水醇导入膜分离装置而得到第二浓缩醇的膜分离工序,该膜分离装置具备包含SiO2/Al2O3摩尔比为5~15的沸石的膜复合体。

    高浓度醇的制造方法
    13.
    发明公开

    公开(公告)号:CN106795075A

    公开(公告)日:2017-05-31

    申请号:CN201580052753.X

    申请日:2015-06-29

    Abstract: 本发明的目的在于提供一种工艺整体高效的、由水‑醇混合物制造高浓度的醇的方法。本发明涉及一种高浓度醇的制造方法,其具有下述工序:使水‑醇混合物的水吸附到吸附塔中而得到第一浓缩醇的水吸附工序;接着导入醇而得到含水醇的水解吸工序;以及,将上述含水醇导入膜分离装置而得到第二浓缩醇的膜分离工序,该膜分离装置具备包含SiO2/Al2O3摩尔比为5~15的沸石的膜复合体。

    吸附热泵以及吸附材料作为吸附热泵用吸附材料的使用

    公开(公告)号:CN100422662C

    公开(公告)日:2008-10-01

    申请号:CN200610100222.6

    申请日:2002-02-20

    Abstract: 一种吸附材料的使用方法,包括加热具有被吸附物的吸附材料使被吸附物解吸、将干燥的吸附材料冷却到用于被吸附物的吸附的温度、以及再次用于被吸附物的吸附,其中:(1)该吸附材料包含在骨架构造上含有铝和磷的沸石,(2)该吸附材料是水蒸汽吸附材料,在吸附/解吸部的吸附操作时相对蒸气压φ2b在0.115以上0.18以下、吸附/解吸部的解吸操作时相对蒸气压φ1b在0.1以上0.14以下的区域,具有利用下式求出的吸附材料的吸附量差达到0.15g/g以上的范围:吸附量差=Q2-Q1,其中,Q1=根据吸附/解吸部的解吸操作温度(T3)下测定的水蒸气解吸等温线求得的φ1b处的吸附量,Q2=根据吸附/解吸部的吸附操作温度(T4)下测定的水蒸气吸附等温线求得的φ2b处的吸附量,而φ1b(吸附/解吸部的解吸操作时相对蒸气压)=[冷却该冷凝器的制冷剂温度(T2)下的平衡水蒸气压]/[加热该吸附/解吸部的载热体温度(T1)下的平衡水蒸气压],φ2b(吸附/解吸部的吸附操作时相对蒸气压)=[蒸发部生成的制冷温度(T0)下的平衡蒸气压/冷却该吸附]/[解吸部的制冷剂温度(T2)下的平衡蒸气压],(其中,设T0=5~10℃、T1=T3=90℃、T2=T4=40~45℃)。

    吸附热泵以及吸附材料作为吸附热泵用吸附材料的使用

    公开(公告)号:CN1904512A

    公开(公告)日:2007-01-31

    申请号:CN200610100222.6

    申请日:2002-02-20

    CPC classification number: Y02A30/276 Y02P20/129

    Abstract: 一种吸附材料的使用方法,包括加热具有被吸附物的吸附材料使被吸附物解吸、将干燥的吸附材料冷却到用于被吸附物的吸附的温度、以及再次用于被吸附物的吸附,其中:(1)该吸附材料包含在骨架构造上含有铝和磷的沸石,(2)该吸附材料是水蒸气吸附材料,在吸附/解吸部的吸附操作时相对蒸气压φ2b在0.115以上0.18以下、吸附/解吸部的解吸操作时相对蒸气压φ1b在0.1以上0.14以下的区域,具有利用下式求出的吸附材料的吸附量差达到0.15g/g以上的范围:吸附量差=Q2-Q1,其中,Q1=根据吸附/解吸部的解吸操作温度(T3)下测定的水蒸气解吸等温线求得的φ1b处的吸附量,Q2=根据吸附/解吸部的吸附操作温度(T4)下测定的水蒸气吸附等温线求得的φ2b处的吸附量,而φ1b(吸附/解吸部的解吸操作时相对蒸气压)=[冷却该冷凝器的制冷剂温度(T2)下的平衡水蒸气压]/[加热该吸附/解吸部的载热体温度(T1)下的平衡水蒸气压],φ2b(吸附/解吸部的吸附操作时相对蒸气压)=[蒸发部生成的制冷温度(T0)下的平衡蒸气压/冷却该吸附]/[解吸部的制冷剂温度(T2)下的平衡蒸气压](其中,设T0=5~10℃、T1=T3=90℃、T2=T4=40~45℃)。

Patent Agency Ranking