-
公开(公告)号:CN115953653A
公开(公告)日:2023-04-11
申请号:CN202111657111.6
申请日:2021-12-31
Applicant: 中国科学院计算技术研究所
IPC: G06V10/778 , G06V10/776 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于知识重要性的类别增量行为识别模型构建方法以及行为识别方法。本发明针对增量学习过程中灾难性遗忘和长尾数据集中类别不平衡的问题,首次提出了利用权重子集获得混合权重从而使教师模型自主识别重要性知识的判断方法,达到保留旧数据中的重要性知识,实现了在增量学习过程中,学生网络可以根据教师网络的判别效果自动更新自适应,从而在一定程度上缓解了灾难性遗忘问题;同时通过限制权重子集的范围,也解决了长尾数据集中类别不平衡的问题。
-
公开(公告)号:CN112884076B
公开(公告)日:2022-07-15
申请号:CN202110312274.4
申请日:2021-03-24
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种基于条件式生成对抗网络的传感器数据生成模型及方法,所述模型包括:生成器以及判别器,其中,所述生成器包括第一条件功能模块、多尺度多维度功能模块、时序功能模块;所述判别器包括第二条件功能模块、时频域功能强化模块、相似度计算模块。通过本发明可以解决传感器数据采集耗时、标注成本高等问题,且可以通过类别条件控制合成满足专业人士的指定要求的逼真的多轴向时序传感器数据。
-
公开(公告)号:CN114209323A
公开(公告)日:2022-03-22
申请号:CN202210069138.1
申请日:2022-01-21
Applicant: 中国科学院计算技术研究所
Abstract: 本发明实施例提供了一种识别情绪的方法以及基于脑电数据的情绪识别模型,其中,情绪识别模型包括:空间矩阵构造模块,用于根据多个时间片中的每个时间片获得的用户的脑电信号生成第一空间矩阵,得到多个第一空间矩阵;空间特征提取模块,用于对多个第一空间矩阵中每个第一空间矩阵分别利用注意力机制计算每行以及每列的注意力权值,并根据每个第一空间矩阵的每行以及每列的注意力权值获得多个第二空间矩阵;时空特征融合模块,用于提取多个第二空间矩阵间的时序关联特征,根据多个第二空间矩阵以及对应的时序关联特征,得到多个时空表征向量;情绪识别模块,用于根据多个时空表征向量确定用户的情绪。
-
公开(公告)号:CN109086658B
公开(公告)日:2021-06-08
申请号:CN201810589194.1
申请日:2018-06-08
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于生成对抗网络的传感器数据生成方法,包括:模型构建步骤,以真实数据通过神经网络模型构建生成对抗网络模型,该生成对抗网络模型包括生成器和判别器;模型训练步骤,以对抗博弈机制训练该生成器和该判别器,并进行迭代,直到从该生成器获得的数据满足评价标准;数据生成步骤,以该生成器通过该对抗网络模型生成合成数据。
-
-
-