-
公开(公告)号:CN105238397B
公开(公告)日:2017-10-13
申请号:CN201510730652.5
申请日:2015-11-02
Applicant: 吉林大学
IPC: C09K11/61
Abstract: 一种基于Pb2+离子的紫外上转换发光材料,属于发光技术领域,具体涉及一种包含三价镧系Yb3+离子和二价铅离子Pb2+的碱土金属氟化物无机上转换紫外发光材料。该材料由碱土金属氟化物基质材料和镧系镱离子Yb3+、二价铅离子Pb2+组成,以全部金属阳离子的摩尔浓度和为100%计算,Yb3+离子的摩尔浓度为0.1%~4%,Pb2+的摩尔浓度为0.1%~4%。在980nm近红外光的激发下,该材料中的二价铅离子可以发射出峰值位于~383nm的宽带紫外上转换发光,其半高全宽约为14nm。与Er3+、Tm3+、Ho3+等镧系离子相比,Pb2+离子不仅具有很宽的光谱发射峰,而且其发射峰只有一个。因此,本发明提供的紫外上转换发光材料具有独特的光谱学性质。
-
公开(公告)号:CN106179337A
公开(公告)日:2016-12-07
申请号:CN201610505542.3
申请日:2016-07-01
Applicant: 吉林大学
CPC classification number: B01J23/52 , B01J21/063 , B01J35/004 , B01J35/10
Abstract: 一种TiO2/Au纳米棒海胆状异质结构光催化剂及其制备方法,属于半导体光催化剂技术领域。将8~16mL、Au纳米棒质量为0.78~1.56mg的Au纳米棒胶体溶液通过离心分离的方法进行浓缩,浓缩到原体积的2~3%,然后向下层浓缩产物中加入去离子水10~30mL,室温搅拌10~20min后,再加入5~10mg/mL的钛盐水溶液0.5~1mL,混合物室温继续搅拌30~50min,随后在100~130℃下加热2~6小时,得到淡紫色的TiO2/Au纳米棒海胆状异质结构光催化剂。本发明制备的TiO2/AuNR海胆状异质结构光催化剂在可见光区展现了强的Au纳米棒的SPR吸收,及优良的减反射特性,可以捕获更多太阳光,同时AuNR可以提高光生电子和空穴的分离效率,此外海胆状结构具有大的比表面积,这些特性都有利于提高该光催化剂的催化效率。
-
公开(公告)号:CN104310486B
公开(公告)日:2015-09-30
申请号:CN201410542959.8
申请日:2014-10-14
Applicant: 吉林大学
Abstract: 一种一步合成单层二氧化锰纳米片的方法,属于过渡金属氧化物纳米材料的可控合成及形貌控制技术领域。本发明通过高锰酸盐在酸性烷基硫酸盐表面活性剂水溶液中的一步反应,利用烷基硫酸盐表面活性剂水解生成相应的醇原位还原高锰酸盐生成二氧化锰。与直接加入还原剂醇相比,本发明通过表面活性剂逐步水解过程有效的控制了二氧化锰的生成速度同时还用作结构诱导试剂,从而实现一步制备得到单层二氧化锰纳米片。制备的单层二氧化锰纳米片展现了优异的电化学电容性能,并可广泛应用于电池、传感、催化等领域。
-
公开(公告)号:CN100427567C
公开(公告)日:2008-10-22
申请号:CN200610017146.2
申请日:2006-08-30
Applicant: 吉林大学
IPC: C09K19/52
Abstract: 本发明属于化学领域,具体涉及一种利用含有介晶基团的阳离子表面活性剂,通过静电相互作用包覆带有负电荷的无机多金属氧簇形成复合物,进而制备含多金属氧簇有机/无机杂化液晶材料的方法。主要包括含介晶基团的阳离子表面活性剂的合成;介晶性阳离子表面活性剂静电包覆多金属氧簇制得杂化液晶材料两个技术步骤。这种方法的最大特点是利用介晶性表面活性剂静电包覆多金属氧簇能够诱导形成的复合物表现出热致液晶行为。通过这种方法制得的杂化材料兼具多金属氧簇的功能特性和液晶分子的各向异性和响应性。此外这种方法对于常见的多金属氧簇能够普遍适用,因此可用于制备具有功能特性的液晶材料。
-
公开(公告)号:CN114350755B
公开(公告)日:2024-04-09
申请号:CN202210048635.3
申请日:2022-01-17
Applicant: 吉林大学
IPC: C12Q1/6841 , C12Q1/6806
Abstract: 一种基于半导体聚合物点的高灵敏度microRNA荧光原位杂交定量标记探针及其制备方法,属于microRNA定量标记检测技术领域。所述的microRNA荧光原位杂交定量标记探针,由半导体聚合物点和靶标microRNA特异性反义互补序列构成;半导体聚合物点是采用半导体聚合物和功能聚合物通过纳米沉淀法在水中制备得到。功能聚合物在这里是为了调整半导体聚合物点的尺寸和表面电位,并可以用来防止半导体聚合物点在高浓度下的聚集;功能聚合物在半导体聚合物点中质量含量较低。靶标microRNA特异性反义互补序列可以根据不同的应用选择不同的特异性序列,可以通过偶联反应直接连接在半导体聚合物点的表面。
-
公开(公告)号:CN114984965B
公开(公告)日:2023-07-21
申请号:CN202210595562.X
申请日:2022-05-30
Applicant: 吉林大学
Abstract: 一种p‑n异质结复合光催化剂Cu2O/MTiO3、制备方法及其在光催化分解水制氢中的应用,属于能量存储与转换技术领域,M为Ca、Sr或Ba。在模拟太阳光照射下,在p‑n异质结复合光催化剂中产生光生电子和空穴。同时,在内建电场的作用下,光生电子从Cu2O的导带流向MTiO3的导带,还原H+得到H2;光生空穴从MTiO3的价带流向Cu2O的价带,最后被牺牲试剂甲醇消耗掉,抑制了光生电子‑空穴对的复合,提高了Cu2O/MTiO3复合光催化剂的分解水产氢活性。由于其在紫外可见光区具有强的光吸收能力,且可以增强光电转换性能,使复合光催化剂Cu2O/MTiO3在太阳能电池领域具有一定的应用前景。
-
公开(公告)号:CN114984965A
公开(公告)日:2022-09-02
申请号:CN202210595562.X
申请日:2022-05-30
Applicant: 吉林大学
Abstract: 一种p‑n异质结复合光催化剂Cu2O/MTiO3、制备方法及其在光催化分解水制氢中的应用,属于能量存储与转换技术领域,M为Ca、Sr或Ba。在模拟太阳光照射下,在p‑n异质结复合光催化剂中产生光生电子和空穴。同时,在内建电场的作用下,光生电子从Cu2O的导带流向MTiO3的导带,还原H+得到H2;光生空穴从MTiO3的价带流向Cu2O的价带,最后被牺牲试剂甲醇消耗掉,抑制了光生电子‑空穴对的复合,提高了Cu2O/MTiO3复合光催化剂的分解水产氢活性。由于其在紫外可见光区具有强的光吸收能力,且可以增强光电转换性能,使复合光催化剂Cu2O/MTiO3在太阳能电池领域具有一定的应用前景。
-
公开(公告)号:CN112724977B
公开(公告)日:2022-05-27
申请号:CN202110067628.3
申请日:2021-01-19
Applicant: 吉林大学
Abstract: 本发明公开了一种尺寸可调的β‑Na(LuY)F4互溶体纳米晶的制备方法,属于纳米荧光材料技术领域。本发明以稀土离子Lu3+和Y3+共同作为基质阳离子来结合NaLuF4与NaYF4这两种优秀上转换发光基质的特点,采用热分解法并利用全自动纳米合成仪进行合成,在保持反应温度、时间、压力、钠源和氟源浓度等制备参数不变的情况下,通过调节Lu3+和Y3+两种离子的投料比例来调节产物的纳米晶尺寸,实现了尺寸可连续调控的β‑Na(LuY)F4互溶体纳米晶的合成。本发明的制备方法可得到单分散性好、结晶性强、晶体尺寸较小、形貌规则、且粒径尺寸分布均一、发光性能优良的互溶体纳米晶。
-
公开(公告)号:CN114479840A
公开(公告)日:2022-05-13
申请号:CN202111620825.X
申请日:2021-12-28
Applicant: 吉林大学
Abstract: 本发明公开了一种通过氧化锆修饰增强的Yb3+团簇合作发光材料、制备方法及其应用,属于团簇合作发光材料技术领域,由团簇合作发光材料与修饰材料组成,具体通过水热法或高温固相法将修饰材料修饰在团簇合作发光材料上,所述团簇合作发光材料为CaF2:Yb3+,所述修饰材料为ZrO2,其中,CaF2:Yb3+是以三价镧系镱离子Yb3+作为发光离子、碱土金属氟化物CaF2作为基质材料制备得到;以全部金属阳离子的摩尔浓度和为100%计算,三价镱离子Yb3+的掺杂浓度为0.5mol%‑1mol%;在980nm近红外光的激发下,该材料中的Yb3+团簇可以发射出峰值~487nm、501nm、517nm、522nm的绿光区合作发光以及~343nm紫外合作发光,并使得其在紫外区的发光强度大幅度提升一倍以上;该制备方法的修饰方法简单,样品的发光学性能稳定。
-
公开(公告)号:CN114188433A
公开(公告)日:2022-03-15
申请号:CN202111502858.4
申请日:2021-12-10
Applicant: 吉林大学
IPC: H01L31/102 , H01L31/0224 , H01L31/18
Abstract: 本发明公开了一种可被近红外光激发的h‑BN光电转换器件及其制备方法,属于宽禁带半导体的近红外光激发技术领域,由上转换微米晶NaYF4:Yb,Tm,Gd与h‑BN@电极进行附着结合得到;当近红外光源照射光电转换器件时,表面的上转换微米晶NaYF4:Yb,Tm,Gd经由内部7光子上转换发光可产生波长为205nm和195.3nm的紫外荧光,为h‑BN的光激发提供能量,从而实现h‑BN的近红外光激发。由于h‑BN材料为宽禁带半导体,实现其光激发所需的光源为波长小于210nm的深紫外光,故由h‑BN材料制成的光电转换器件多用于深紫外光的探测。本发明提出的可被近红外光激发的h‑BN光电转换器件在丰富了以h‑BN为原材料的光电转换器件可探测光源的波长范围的同时,还解决了使用h‑BN作为光触媒应用于光催化领域的关键技术难点。
-
-
-
-
-
-
-
-
-