-
公开(公告)号:CN115237139B
公开(公告)日:2023-05-23
申请号:CN202210959456.5
申请日:2022-08-10
Applicant: 哈尔滨理工大学
IPC: G05D1/02
Abstract: 本发明公开了一种考虑虚拟目标点的无人船路径规划方法,旨在解决无人船在路径规划中存在的易陷入局部极小值和目标不可达问题。对于目标不可达问题,创建斥力势场函数,根据测算目标与障碍物的间隔,促使目标所受斥力为零,使无人船可以到达目标点处。对于局部极小值问题,对各类障碍引起的局部极小值开展分析,结合模拟退火算法和人工势场法求解一般障碍导致的极小值点问题。针对非一般的U型障碍造成的局部极小值问题,给出虚拟目标点构造算法,通过建立虚拟目标点的改进算法来解决此类问题。仿真结果表明,与其它方法相比,本方法减少了由于斥力太大而导致的路径过长问题,不仅节省时间,而且优化了路径规划,从而加快了算法的速度。
-
公开(公告)号:CN114879481B
公开(公告)日:2022-12-02
申请号:CN202210621008.4
申请日:2022-06-02
Applicant: 哈尔滨理工大学
IPC: G05B11/42
Abstract: 针对具有复杂水动力参数和非线性特性的船舶动力定位系统,本发明公开了一种鲁棒H∞抗干扰控制方法,具体包括以下步骤:建立动力定位船舶的三自由度动力学模型和运动学模型;将建立的数学模型转化为鲁棒H∞控制问题;构建存储函数使其满足耗散不等式;通过给出含有不确定性的非线性系统具有鲁棒H∞性能的充分条件,得到闭环系统具有局部鲁棒干扰抑制性能的状态反馈控制率。本发明通过设计非线性状态反馈控制率克服了系统固有的非线性特性,解决了动力定位系统中水动力参数复杂且难以整定的技术问题,提出的鲁棒H∞控制方法在保证控制稳定性的同时,还能有效地降低模型的复杂度和控制过程中的计算量。
-
公开(公告)号:CN115268302A
公开(公告)日:2022-11-01
申请号:CN202211115771.6
申请日:2022-09-14
Applicant: 哈尔滨理工大学
IPC: G05B17/02
Abstract: 本发明是一种基于微元法的船用减摇旋柱实时升力仿真平台。该平台首先通过模型参数输入和运动控制模块获取船舶和减摇旋柱的运动状态并将其处理后输出至升力预测模块和虚拟仿真模块;在虚拟仿真模块中,通过接收上述模块的参数进行仿真来实现对全航速、多工况下的减摇旋柱工作状态的模拟;在升力预测模块中,先对减摇旋柱进行微元化处理,对其进行水动力分析后进而得到在摆动‑转动模式下单周期内减摇旋柱的实时升力,并通过与期望对比来矫正平台参数;在优化决策模块中,能够对仿真试验结果进行优化分析。本发明优化了仿真模拟流程,实现了对全航速、多工况减摇旋柱在摆动‑转动模式下的实时升力分析,为其工程应用提供了可靠的理论分析平台。
-
公开(公告)号:CN114839994A
公开(公告)日:2022-08-02
申请号:CN202210543801.7
申请日:2022-05-18
Applicant: 哈尔滨理工大学
IPC: G05D1/02
Abstract: 本发明针对人工势场法(artificial potential field approach,APFA)在无人船路径规划应用存在建模理想化导致路径效率低、易陷入局部极小值的问题,公开了一种基于改进人工势场法的无人船航速自适应路径规划方法,具体包括:将障碍物规则化处理,以障碍物的最长距离为直径,等效为圆形障碍物,设置安全距离,弥补传统APFA建模理想化导致无法准确判断与障碍物距离的不足;设计适用于不同航速的无人船转角公式,构建其转角判定条件,根据两次切线判定准则,避免无人船路径规划陷入局部最优。仿真结果表明,本发明提出的改进APFA方法解决了无人船在不同航速下易陷入局部极小值的问题,所规划路径更优、时间更快、效率更高。
-
公开(公告)号:CN114802594A
公开(公告)日:2022-07-29
申请号:CN202210622957.4
申请日:2022-06-02
Applicant: 哈尔滨理工大学
Abstract: 针对船载设备由于海浪干扰产生摇摆的问题,设计一种升沉补偿的三自由度船载稳定平台。本发明装置由减横摇外环、减纵摇内环、升沉补偿系统、PLC控制箱、双向阻尼器、多角度传感器、超声波距离传感器、波高观测系统、横纵摇伺服系统和载物平台等部分组成。减横摇外环、减纵摇内环和升沉补偿系统保持载物平台在横纵摇及升沉方向的位置恒定,采用角度传感器测量横、纵摇角信号,进而驱动横、纵摇伺服系统,抑制装置在横纵摇方向的运动,利用波高观测系统获取波高后计算补偿后期望位置,带入阻抗公式获得系统输出力,补偿升沉方向的干扰。本发明对载物平台的横、纵摇及升沉三自由度分别进行干扰补偿,本装置的稳定性强,响应速度快,控制精度高。
-
公开(公告)号:CN113848729B
公开(公告)日:2022-06-21
申请号:CN202111212870.1
申请日:2021-10-19
Applicant: 哈尔滨理工大学
IPC: G05B13/04
Abstract: 本发明公开了一种基于水弹性力学、流固耦合和虚拟阻尼的船用鳍阻抗控制方法,旨在解决船用鳍在水中的主动柔顺控制问题,具体包括以下步骤:建立鳍体的欧拉‑拉格朗日动力学方程,以中心轴的转动角度、角速度和角加速度作为系统输入,并引入期望参考力实现力跟踪效果,以中心轴作为末端执行器,得到以鳍体为外部物体的阻抗控制系统,将流体对鳍体产生的附加特性整合到鳍体的阻抗特性,设计基于流固耦合的阻抗控制方法;最后进行稳定性分析,证明系统的阻抗误差收敛到零或零的邻域;同时,依据阻抗参数选取规则,以确定虚拟阻尼的方式实现参数优化,实现阻抗控制系统的参数优化。本发明贴近实际,柔顺控制效果好,力和位置跟踪更为准确。
-
公开(公告)号:CN114595958A
公开(公告)日:2022-06-07
申请号:CN202210211487.2
申请日:2022-02-28
Applicant: 哈尔滨理工大学
Abstract: 本发明公开了一种舰载机保障人员调度方法,应对甲板舰载机保障作业调度的不确定突发状况。首先将保障人员对舰载机的保障过程构造为马尔科夫决策过程;随后根据该过程特点设计一种改进的Soft Actor Critic(SAC)调度算法:(1)为降低学习难度,将SAC算法拓展为多智能体算法,并添加环境数据处理,减少智能体需处理的环境状态信息;(2)为避免动作冲突情况,设计自适应率以增加调度质量;(3)为优化整体训练过程,设置无效动作屏蔽机制、优先经验回放机制。最后将设计好的算法投入训练,完成训练的智能体即可投入调度。该方法能够较好地应对甲板出现的紧急突发状况,使得甲板调度对于不确定性有着更强的鲁棒性,增加了甲板调度的效率。
-
公开(公告)号:CN114564023A
公开(公告)日:2022-05-31
申请号:CN202210241308.X
申请日:2022-03-11
Applicant: 哈尔滨理工大学
IPC: G05D1/02
Abstract: 为解决快速变化的动态复杂场景下基于搜索的寻路算法中存在的算法效率低,路径局部最优等问题。在跳点搜索(jump point search,JPS)算法基础上,提出动态场景下的跳点搜索(dynamic jump point search,DJPS)路径规划方法。DJPS算法应对不同场景下的障碍物变化,设计一套完整的“跳点‑路径更新方案”,同时探索障碍物更新时可能出现的新“近路”,优化所求得路径以保证路径的最优性。为验证DJPS算法的有效性,设计多种复杂地图下的路径更新实验。本发明中仅对原始路径以及路径附近节点进行障碍物检测,且利用原算法中保存于OpenList以及CloseList中的跳点,相互连接得到的未寻路结束的“废弃路径”,限制每次寻路时的搜索长度,降低算法的时间复杂度和空间复杂度,实现动态场景下的跳点搜索方案。
-
公开(公告)号:CN113608440B
公开(公告)日:2022-02-22
申请号:CN202110890976.0
申请日:2021-08-04
Applicant: 哈尔滨理工大学
IPC: G05B13/04 , G06F30/17 , G06F30/20 , G06F111/10 , G06F119/14
Abstract: 本发明公开一种考虑绳长变化的船用吊艇系统减摆控制方法。解决大型舰船的吊艇系统减摆控制存在响应速度慢和位移饱和而导致传统位置控制效果不佳的问题。包括:首先构建考虑绳长变化和海浪横摇运动的动力学模型,对其部分反馈线性化,设计位置控制模式,减小强干扰带来的误差,但其使系统频繁减摆导致柔顺性下降,其次构建含有期望刚度、期望阻尼和期望质量的二阶环境耦合动力学模型,引入隐形弹力函数,补偿接触力信息;但因环境刚度受到强干扰时变,需要在线调整参数,为了避免参数动态变化引起系统震荡,最后设计环境补偿函数与自适应律,保证系统柔顺性与稳定性。该方法可有效减小摆角,保证工作艇位姿稳定,提高收放效率。
-
公开(公告)号:CN113608440A
公开(公告)日:2021-11-05
申请号:CN202110890976.0
申请日:2021-08-04
Applicant: 哈尔滨理工大学
IPC: G05B13/04 , G06F30/17 , G06F30/20 , G06F111/10 , G06F119/14
Abstract: 本发明公开一种考虑绳长变化的船用吊艇系统减摆控制方法。解决大型舰船的吊艇系统减摆控制存在响应速度慢和位移饱和而导致传统位置控制效果不佳的问题。包括:首先构建考虑绳长变化和海浪横摇运动的动力学模型,对其部分反馈线性化,设计位置控制模式,减小强干扰带来的误差,但其使系统频繁减摆导致柔顺性下降,其次构建含有期望刚度、期望阻尼和期望质量的二阶环境耦合动力学模型,引入隐形弹力函数,补偿接触力信息;但因环境刚度受到强干扰时变,需要在线调整参数,为了避免参数动态变化引起系统震荡,最后设计环境补偿函数与自适应律,保证系统柔顺性与稳定性。该方法可有效减小摆角,保证工作艇位姿稳定,提高收放效率。
-
-
-
-
-
-
-
-
-