-
公开(公告)号:CN106491129A
公开(公告)日:2017-03-15
申请号:CN201610885750.0
申请日:2016-10-10
Applicant: 安徽大学
IPC: A61B5/0496 , G06K9/00 , G06F3/01
Abstract: 本发明公开了一种基于EOG的人体行为识别系统及方法,首先建立一个基于Hjorth参数的EOG信号识别模型,用于实现对原始单元EOG信号的识别;同时,使用N-gram方法统计背景任务下不同行为状态的上下文关系,并建立一个眼动信号-行为状态关系模型;最后,通过置信度参数对两个模型输出的结果进行综合的分析与判断,以获取受试者最可能的行为状态。本发明的一种基于EOG的人体行为识别方法,具有识别正确率更高、扩展性更强、应用前景良好等优点。
-
公开(公告)号:CN105640500A
公开(公告)日:2016-06-08
申请号:CN201510975646.6
申请日:2015-12-21
Applicant: 安徽大学
IPC: A61B5/00 , A61B5/0496
CPC classification number: A61B5/0496 , A61B5/72 , A61B5/7203
Abstract: 本发明公开了一种基于独立分量分析的扫视信号特征提取方法,采集6导联扫视眼电信号并对其进行带通滤波处理,将滤波后的数据使用ICA方法建立对应不同扫视任务背景下的空域滤波器组后,进行线性投影,获取扫视信号的空域特征参数。本发明还公开了一种基于独立分量分析的扫视信号特征提取方法的识别方法,对眼动数据库中每个实验样本建立ICA空域滤波器组,提取特征参数,结合支持向量机进行交叉验证,确定最优ICA滤波器组及SVM模型参数;使用最优ICA空域滤波器组进行滤波后送入SVM分类器中进行识别。本发明的一种基于独立分量分析的扫视信号特征提取方法与识别方法,具有识别正确率更高、扩展性更强、应用前景良好等优点。
-
公开(公告)号:CN108710895B
公开(公告)日:2022-03-22
申请号:CN201810366834.2
申请日:2018-04-23
Applicant: 安徽大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于独立分量分析的运动想象脑电信号分类方法,包括以下步骤:S1:采集脑电信号并对脑电信号进行预处理,将预处理后的脑电信号随机分为训练集和测试集;S2:将训练集数据依次选择单次试验样本数据进行独立分量分析计算,并基于源的空间分布模式实现运动相关分量的自动识别获取;S3:基于零训练分类器的运动想象分类识别;S4:使用训练集数据进行导联的优化选择,将优化后的导联代入测试集,循环步骤S2和S3,得到最终的分类识别率。本发明可以减少由采集的EEG数据之间的差异性所带来的空域模型匹配问题产生,对运动想象EEG信号具有较高的识别正确率。
-
公开(公告)号:CN107480716A
公开(公告)日:2017-12-15
申请号:CN201710695447.9
申请日:2017-08-15
Applicant: 安徽大学
IPC: G06K9/62 , G06K9/00 , A61B5/0496
Abstract: 本发明公开一种结合EOG和视频的扫视信号识别方法及系统,属于眼电图技术领域,包括:同步采集扫视动作的EOG数据与视频数据;对EOG数据和视频数据进行预处理;对EOG数据采集通道进行端点检测,得到端点检测结果;将端点检测结果应用于EOG与视频两种模态下的有效眼动数据段检测,将有效眼动数据分为训练集和测试集;对训练集和测试集中两种模态下的数据进行特征提取得到有效眼动数据的特征;将两种模态下有效眼动数据的特征进行融合;将融合后扫视特征参数送入SVM分类器中进行训练,得到分类模型;利用测试集中数据对分类模型进行测试,得到测试后分类模型以进行信号识别。本发明中融合后的特征具有更多互补信息,提高了信号识别鲁棒性。
-
公开(公告)号:CN107480635A
公开(公告)日:2017-12-15
申请号:CN201710695421.4
申请日:2017-08-15
Applicant: 安徽大学
Abstract: 本发明公开了一种基于双模态分类模型融合的扫视信号识别方法及系统,属于眼电图技术领域,方法包括:同步采集受试者不同扫视动作类别的EOG数据和视频数据;对EOG数据和视频数据分别进行预处理;对EOG数据和视频数据进行端点检测;选择EOG数据端点检测结果和视频数据端点检测结果中有效数据较长端点作为最终的端点检测结果;将两种模态下的有效眼动数据段分成训练集和测试集并进行特征参数提取;将两种模态下有效眼动数据特征参数送入SVM分类器中进行训练,得到两种分类模型;对两种分类模型进行融合;利用测试集中的数据对模型融合进行测试以对扫视信号进行识别。本发明中融合后的特征具有更多互补信息,提高了信号识别鲁棒性。
-
公开(公告)号:CN107450730A
公开(公告)日:2017-12-08
申请号:CN201710695419.7
申请日:2017-08-15
Applicant: 安徽大学
Abstract: 本发明公开了一种基于卷积混合模型的慢速眼动识别方法及系统,属于眼电图技术领域,包括采用复值ICA算法对各频点的眼动数据进行盲源分离,得到各独立源信号在相应频点上的频域独立分量;对各频点上的独立分量进行尺度补偿,还原独立分量在观测分量中的真实比例成分;采用约束DOA算法对补偿后的独立分量进行排序调整;对尺度补偿后和排序后的各频点的独立分量进行短时傅里叶逆变换处理,得到时域上多通道独立源完整的时间信号;对多通道独立源完整的时间信号进行小波分解,将得到的分解结果与慢速眼动的评判标准进行对比与分析,与慢速眼动特征均相符的则识别为慢速眼动。本发明在时域中对多通道EOG信号进行小波分析,由于没有其他源信号的干扰能快速的从EOG信号中提取出慢速眼动。
-
公开(公告)号:CN114580464B
公开(公告)日:2025-05-09
申请号:CN202210126540.9
申请日:2022-02-10
IPC: G06F18/2134 , G06F18/213 , G06F18/10 , A61B5/0205
Abstract: 本发明公开了一种基于变分模态分解(VMD)和约束独立分量分析(cICA)的人体心率变异性(HRV)与呼吸率(RR)测量方法,该方法对人体面部视频数据进行像素相干平均运算,将其转化为RGB观测信号,并对RGB观测信号进行预处理操作以实现标准化。接着对G通道信号使用VMD算法进行4通道分解,以分解出的4通道分量中频谱峰值最大的分量为基础求出血流量脉冲(BVP)的参考信号。基于该参考信号,使用cICA算法从RGB观测信号中分离出BVP源信号,并运用VMD算法对BVP源信号进行4通道分解,从分离出的4通道分量中提取出优质脉搏波成分,进一步求得HRV参数和RR。本发明能够回避传统盲源分离/独立分量分析算法中固有的源排序模糊问题,并具备较好的抗噪声干扰性,在该领域具有较好的应用前景。
-
公开(公告)号:CN106491129B
公开(公告)日:2019-09-10
申请号:CN201610885750.0
申请日:2016-10-10
Applicant: 安徽大学
IPC: A61B5/0496 , G06K9/00 , G06F3/01
Abstract: 本发明公开了一种基于EOG的人体行为识别系统及方法,首先建立一个基于Hjorth参数的EOG信号识别模型,用于实现对原始单元EOG信号的识别;同时,使用N‑gram方法统计背景任务下不同行为状态的上下文关系,并建立一个眼动信号‑行为状态关系模型;最后,通过置信度参数对两个模型输出的结果进行综合的分析与判断,以获取受试者最可能的行为状态。本发明的一种基于EOG的人体行为识别方法,具有识别正确率更高、扩展性更强、应用前景良好等优点。
-
-
-
-
-
-
-