-
公开(公告)号:CN110247071A
公开(公告)日:2019-09-17
申请号:CN201910602806.0
申请日:2019-07-05
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种正极材料的制备方法,所述制备方法包括如下步骤:(1)合成ZIF-67前驱体;(2)将所述ZIF-67前驱体煅烧,得到正极材料。本发明以ZIF-67为前驱体制备正极材料,工艺操作过程简便,可得到大小均一,形貌较好的纳米复合材料,得到的正极材料作为锂空气电池正极时,其较高的比表面积可促进氧气的吸附,碳的包覆可提高材料的导电性,而氮的掺杂有利于提高材料的电催化性能,因此该复合材料作为锂空气电池正极具有良好的电化学性能。
-
公开(公告)号:CN110136989A
公开(公告)日:2019-08-16
申请号:CN201910498609.9
申请日:2019-06-10
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种正极,所述正极为柔性电极,所述正极包括石墨烯片以及附着在所述石墨烯片上的双金属硫化物。本发明中双金属硫化物相比于现有技术中的单金属硫化物,双金属硫化物电极材料的导电率是单金属硫化物的几倍甚至几十倍,弥补了单金属硫化物电极材料的循环性能差,倍率特性差的缺点。此外,两组分均可以发生氧化还原反应,由此可以提供更大的比电容,本发明将高离子扩散的双金属硫化物与具有高导电性的柔性石墨烯片协同结合,制备出具有高的比表面积和高的电导率,表明其在高功率、高安全性和动力用领域中具有较大应用潜力。
-
公开(公告)号:CN109742365A
公开(公告)日:2019-05-10
申请号:CN201910019663.0
申请日:2019-01-09
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/04 , H01M4/131 , H01M4/1391 , H01M10/054 , H01M10/0585
Abstract: 本发明涉及一种钠离子电池正极材料、制备方法以及一种钠离子电池,所述正极材料的分子结构式为Na2/3Ni1/3-xMxMn2/3O2,其中,0<x<1/3,M为Cu和/或Mg,所述正极材料为具有六角形和/或条形形貌的层状颗粒。本发明所提供的钠离子电池正极材料可有效抑制高电压下不利的P2-O2两相转变,同时在深度充电状态下可以缓解出现钠/空位有序对的现象,避免正极材料发生严重的电压和容量衰减;由本发明提供的钠离子电池正极材料制备得到的钠离子电池容量高、循环寿命长且倍率性能优良。
-
公开(公告)号:CN109301220A
公开(公告)日:2019-02-01
申请号:CN201811179891.6
申请日:2018-10-10
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/054
Abstract: 本发明涉及一种氮掺杂硬碳材料的制备方法,所述制备方法包括如下步骤:(1)将植物资源酸洗,然后浸渍于氮源水溶液中,制得预产品;(2)在保护性气氛下,对预产品进行热处理,制得氮掺杂硬碳材料。所述氮掺杂硬碳材料具有多孔结构,氮原子分布在所述硬碳材料内部及表面,氮含量为1~10wt%,比表面积小于100m2/g。所述氮掺杂硬碳材料具有容量高、首次库伦效率高于50%、循环性能好且倍率性能优异等特点,用于钾离子电池负极材料领域,制备工艺简单,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN108598627A
公开(公告)日:2018-09-28
申请号:CN201810465821.0
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
IPC: H01M12/06
CPC classification number: H01M12/06
Abstract: 一种高容量钾-氧气电池,以金属钾为负极,顺序叠加用来隔离负极和氧气正极的隔膜、氧气正极和泡沫镍弹片,在正极和负极之间充满电解液。所述氧气正极包括气体扩散层和导电材料涂层,并使用氧气作为正极活性物质,所述导电材料涂层涂覆在气体扩散层的表面。本发明的钾-氧气电池的放电比容量最高可达2505mAh/g,充放电过电位很小(电流密度为0.1mA/m2时,仅为50mV),无需使用催化剂减小过电位。本发明填补了钾-氧气电池技术领域的空白,扩展了空气电池的研究领域,整体电化学性能优良,有更好的实用价值。
-
公开(公告)号:CN107919468A
公开(公告)日:2018-04-17
申请号:CN201711137428.0
申请日:2017-11-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明提供了一种稀土元素共掺杂的磷酸锰锂/碳复合正极材料及其制备方法。所述复合正极材料由磷酸锰锂和位于所述磷酸锰锂内部的碳层构成,其中,所述磷酸锰锂中的锂、锰位被稀土元素共掺杂。所述复合正极材料的制备方法包括:1)制备第一碳层包覆的锂位掺杂磷酸锂;2)将步骤1)制备的第一碳层包覆的锂位掺杂磷酸锂制备成稀土元素共掺杂的磷酸锰锂/碳复合正极材料,第一碳层位于稀土元素共掺杂的磷酸锰锂/碳复合正极材料的内部。本发明提供的正极材料电化学性能好,且粒径小,颗粒大小均匀,比表面积大,电导率高,结晶性高,晶胞尺寸大;本发明的方法绿色环保、过程易控、成本低。
-
公开(公告)号:CN106981648A
公开(公告)日:2017-07-25
申请号:CN201710413407.0
申请日:2017-06-05
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/58 , H01M4/583 , H01M4/62 , H01M10/0525
CPC classification number: H01M4/366 , H01M4/5825 , H01M4/583 , H01M4/625 , H01M10/0525
Abstract: 本发明提供了一种复合正极材料、其制备方法和包含该复合正极材料的锂离子电池。本发明的复合正极材料由金属离子Li位掺杂的磷酸锰锂及包覆其表面的导电碳层构成,且金属离子M均匀分布在磷酸锰锂内部并占据Li位,M=Na、K、Mg或Al中的任意一种或至少两种的组合。本发明的复合材料中金属离子掺杂减少了复合正极材料的颗粒尺寸,缩短Li+的扩散路径,提高了Li+的嵌入/脱出速率,提高了金属离子掺杂正极材料的离子电导率,2层导电碳层的引入提升了结合性和导电性,本发明的复合正极材料非常适合作为锂离子电池正极活性材料,制得的锂离子电池的循环性能和安全性能显著提高。
-
公开(公告)号:CN110136989B
公开(公告)日:2021-11-02
申请号:CN201910498609.9
申请日:2019-06-10
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种正极,所述正极为柔性电极,所述正极包括石墨烯片以及附着在所述石墨烯片上的双金属硫化物。本发明中双金属硫化物相比于现有技术中的单金属硫化物,双金属硫化物电极材料的导电率是单金属硫化物的几倍甚至几十倍,弥补了单金属硫化物电极材料的循环性能差,倍率特性差的缺点。此外,两组分均可以发生氧化还原反应,由此可以提供更大的比电容,本发明将高离子扩散的双金属硫化物与具有高导电性的柔性石墨烯片协同结合,制备出具有高的比表面积和高的电导率,表明其在高功率、高安全性和动力用领域中具有较大应用潜力。
-
公开(公告)号:CN112864381A
公开(公告)日:2021-05-28
申请号:CN201911187918.0
申请日:2019-11-28
Applicant: 东北大学秦皇岛分校
Abstract: 本发明属于电池负极材料技术领域,公开了一种纳米硫化铅的电池负极材料及其制备方法,该材料的形态为具有的六足状硫化铅纳米结构,其制备过程包括:采用PVP作为软模板,将其与铅源在乙二醇中溶解,混合均匀,随后加热搅拌,加入硫源,反应得到硫化铅沉淀,经过离心洗涤去除乙二醇,加入碳源进行碳包覆,干燥后得到粉末,研磨后在管式炉中惰性气氛中一定温度下进行热处理,得到硫化铅/碳复合材料。制备出的材料用于锂离子电池负极,具有容量高,循环性能好且倍率性能优异等特点。而且制备工艺简单,对环境友好,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN110391408B
公开(公告)日:2021-03-16
申请号:CN201910670899.0
申请日:2019-07-24
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/48 , H01M4/62 , H01M10/054
Abstract: 一种内嵌锡基氧化物的热解碳电池负极材料及其制备方法,属于电池负极材料技术领域;该材料是由碳包覆的纳米锡基氧化物颗粒和热解碳复合而成,碳包覆的纳米锡基氧化物颗粒均匀内嵌在热解碳上;其颗粒直径为2~5nm;所述的碳包覆层厚度为1~5nm;所述的热解碳为三维多孔网状碳结构;制备方法:1)将NaCl:碳源:锡源:能与锡形成合金的可溶性盐混合,用去离子水溶解,磁力搅拌且完全冻实后,进行真空干燥;2)热处理后冷却至室温,制得粉末;3)将粉末洗涤、过滤和烘干;在酸中浸泡;4)烘干制得内嵌锡基氧化物的电池复合负极材料。本发明的电池复合负极材料在钾离子半电池测试中,在50~2000mA g‑1的电流密度下,首次充电可逆容量为300~500mAh g‑1,经过20~100次循环后,容量为150~290mAh g‑1。
-
-
-
-
-
-
-
-
-