一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池

    公开(公告)号:CN109301246A

    公开(公告)日:2019-02-01

    申请号:CN201811142962.5

    申请日:2018-09-28

    Abstract: 本发明涉及一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池,所述硬碳材料具有多孔结构,所述硫原子至少部分分布在所述硬碳材料的内部。所述硬碳材料的制备方法包括:(1)将高硫煤酸洗,然后浸渍于碱性溶液中,制得预产品;(2)在保护性气氛下,将预产品进行热处理,制得硬碳材料;(3)将硬碳材料进行酸溶液浸泡、洗涤、过滤和烘干过程。本发明以高硫煤为原料,制得的硬碳材料孔径大小可以满足钾离子嵌入/脱出要求,与此同时,硫元素原位自掺杂于材料的表面和碳基体中,赋予材料新的电化学活性及更理想的孔道结构。本发明制得的碳材料中硫元素分布更均匀、生产成本更低廉。

    一种生物遗态结构Sb/C电池负极材料及其制备方法

    公开(公告)号:CN110697717B

    公开(公告)日:2021-09-21

    申请号:CN201910862744.7

    申请日:2019-09-12

    Abstract: 本发明涉及一种生物遗态结构Sb/C电池负极材料及其制备方法,通过对分心木进行酸液浸泡,得到保留了原材料结构的生物遗态碳,再通过对生物遗态碳复合方法制备出Sb/C复合材料,本发明具有以下有益效果:1、与碳复合提高了Sb的电子导电性;2、较大的孔道将会为K+的移动提供更为快速的扩散通道,而不同孔道之间所存在的胞状薄壁结构则可缩短K+在Sb/C复合材料内的传输距离,从而提高其离子导电性;3、众多的微小孔道也可让材料的比表面积得到提高,随着其比表面积的提高,其电池的比容量也会随之增加;4、通过KOH活化亦可控调节生物遗态碳中的孔道结构,从而可以进一步研究不同结构与性能之间存在的关系。

    一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池

    公开(公告)号:CN109301246B

    公开(公告)日:2021-07-02

    申请号:CN201811142962.5

    申请日:2018-09-28

    Abstract: 本发明涉及一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池,所述硬碳材料具有多孔结构,所述硫原子至少部分分布在所述硬碳材料的内部。所述硬碳材料的制备方法包括:(1)将高硫煤酸洗,然后浸渍于碱性溶液中,制得预产品;(2)在保护性气氛下,将预产品进行热处理,制得硬碳材料;(3)将硬碳材料进行酸溶液浸泡、洗涤、过滤和烘干过程。本发明以高硫煤为原料,制得的硬碳材料孔径大小可以满足钾离子嵌入/脱出要求,与此同时,硫元素原位自掺杂于材料的表面和碳基体中,赋予材料新的电化学活性及更理想的孔道结构。本发明制得的碳材料中硫元素分布更均匀、生产成本更低廉。

    一种硫自掺杂硬碳超级电容器电极材料及制备方法

    公开(公告)号:CN110706934A

    公开(公告)日:2020-01-17

    申请号:CN201910862533.3

    申请日:2019-09-12

    Abstract: 本发明涉及一种硫自掺杂硬碳超级电容器电极材料及制备方法,该方法将低阶煤粉化,制备出碳材料,引入KOH活化,考察引入不同质量的KOH对其制备出的碳材料的形貌与孔结构等对电化学性能的影响,制备出高比容量超级电容器电极材料,解决了传统碳材料制备过程复杂耗时,成本昂贵,解决了环境污染问题,通过碱活化扩大生物炭孔径,提高离子传输率,增大比容量,硫元素原位自掺杂于材料的表面和碳基体中,增加生物炭表面官能团,进一步扩大比容量,弥补了生物质炭材料不利用离子的传输的缺陷,制得的超级电容器比容量小的缺陷,通过使用这些碳材料作为电极,构建了具有优异的综合性能、高比电容的超级电容器电极材料,具有广阔的应用前景。

    一种生物遗态结构SbC电池负极材料及其制备方法

    公开(公告)号:CN110697717A

    公开(公告)日:2020-01-17

    申请号:CN201910862744.7

    申请日:2019-09-12

    Abstract: 本发明涉及一种生物遗态结构SbC电池负极材料及其制备方法,通过对分心木进行酸液浸泡,得到保留了原材料结构的生物遗态碳,再通过对生物遗态碳复合方法制备出SbC复合材料,本发明具有以下有益效果:1、与碳复合提高了Sb的电子导电性;2、较大的孔道将会为K+的移动提供更为快速的扩散通道,而不同孔道之间所存在的胞状薄壁结构则可缩短K+在SbC复合材料内的传输距离,从而提高其离子导电性;3、众多的微小孔道也可让材料的比表面积得到提高,随着其比表面积的提高,其电池的比容量也会随之增加;4、通过KOH活化亦可控调节生物遗态碳中的孔道结构,从而可以进一步研究不同结构与性能之间存在的关系。

Patent Agency Ranking