-
公开(公告)号:CN103761246A
公开(公告)日:2014-04-30
申请号:CN201310705515.7
申请日:2013-12-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/3089 , G06F17/30705
Abstract: 本发明提出一种基于链接网络的用户领域识别方法及其装置,属于数据发掘及复杂网络领域。装置包括数据收集与预处理模块,领域原型用户集合构建模块和用户领域计算模块。方法包括:步骤1,手工采集初始种子用户;步骤2,收集种子用户的关注用户;步骤3,构建链接网络,计算各关注用户对于各领域的隶属度;步骤4,按隶属度大小将用户排序;步骤5,为各领域构建领域原型用户集合;步骤6,收集待分类用户的关注用户;步骤7,计算待分类用户对于各领域的隶属度;步骤8,将领域隶属度大小排序;步骤9,加领域标签。本发明适用于多种社交网络平台,能够克服短文本的缺点,特别适合用户建模,个性化信息搜索和推荐等领域。
-
公开(公告)号:CN103761239A
公开(公告)日:2014-04-30
申请号:CN201310664725.6
申请日:2013-12-09
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/3089 , G06F17/3071
Abstract: 本发明公开了一种根据表情符号对微博进行情感倾向分类的方法,包括:创建中性情感集、消极情感集和积极情感集;利用中性情感集、消极情感集和积极情感集,建立中性情感贝叶斯分类器;利用由消极情感集和积极情感集,建立极性情贝叶斯情感分类器;利用中性情感贝叶斯分类器和极性情感贝叶斯分类器对待测微博进行情感分类。本发明通过建立一个两阶段分类,即建立中性情感分类器,把中性情感的微博剔除,建立极性情感分类器,将有极性情感的微博分为积极情感和消极情感,该分类器分类速度快、占用空间小且鲁棒,且本发明能通过微博准确的了解到人们对当前的热门话题或事件的态度和网民的情绪,对社会科研和调查有着重要的帮助。
-
公开(公告)号:CN107577782B
公开(公告)日:2021-04-30
申请号:CN201710827978.9
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06F16/33 , G06F16/9535
Abstract: 本发明公开了一种基于异质数据的人物相似度刻画方法,属于数据挖掘领域。本发明首先搜集用户的微博文本,获取用户之间的关注关系以及各用户的基本信息,针对不同类型数据的特点个性化选择处理方式,并对于微博文本采用Doc2vec模型,结合上下文信息将文本表示成向量,再根据定义的相似度函数衡量相似度,最后将不同维度得到的矩阵进行融合,刻画用户最终的相似度。本发明引入了多种社交网络信息,包括社交关系数据、用户属性数据和用户文本数据等,通过对不同类型的信息加以综合考虑,以得到更全面的人物相似度刻画方法;同时本发明提供了对于多种数据的处理和计算方案,利用完整的数据和加权融合方法,个性化计算不同偏好的人物相似度。
-
公开(公告)号:CN106168969B
公开(公告)日:2019-05-14
申请号:CN201610524367.2
申请日:2016-07-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958
Abstract: 本发明提供一种信源重要度的评级方法及评级系统,评级方法包括:步骤1,计算信源所属网站的网站重要度值W1;步骤2,计算信源在所属行业的行业重要度值W2;步骤3,预设定网站重要度权重值C1和行业重要度权重值C2;根据下式计算得到信源重要度值M:信源重要度值M=网站重要度值W1*网站重要度权重值C1+行业重要度值W2*行业重要度权重值C2;步骤4,根据信源重要度值M对信源进行重要度评级,并输出信源重要度评级结果。优点为:本发明能够对信源进行客观、科学合理、有效实用的信源重要度评级。
-
公开(公告)号:CN105205146B
公开(公告)日:2018-10-30
申请号:CN201510600289.5
申请日:2015-09-18
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种计算微博用户影响力的方法,属于数据挖掘领域,具体步骤如下:一、收集每日的微博流数据;步骤二、服务器将微博流数据平均分发到多个端口;步骤三、对流数据进行特征提取和并行计算;步骤四、将特征存储;步骤五、过滤不关心用户;步骤六、计算用户影响力;步骤七、存储每日每个用户的影响力。优点在于:该影响力的指标增加了平均数、最高数和爆发度,平均数要求用户发布的每条微博的平均影响力都比较高,避免出现微博数大造成转发量或评论量大,最高数和爆发度分别刻画影响力传播的范围和速度,因此,新增加的指标克服以往指标中存在单一总数不能完整刻画用户影响力的缺陷,能够更深入的解释用户影响力高的原因。
-
公开(公告)号:CN105760366B
公开(公告)日:2018-06-29
申请号:CN201610150038.6
申请日:2016-03-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明提供一种针对特定领域的新词发现方法,包括以下步骤:步骤1,文档预处理;步骤2,构建候选新词集;其中,每个候选新词由词语、该词语距离所述中心词语的距离向量值以及所述中心词语均采用新词表述方式表达。步骤3,候选新词挖掘;优点为:针对特定领域的新词发现方法,采用更灵活的新词表达方式,将数据挖掘领域的关联规则方法引入新词发现过程,并创新地提出将词汇与指定关键词的距离向量作为关联规则挖掘的重要特征,由此可快速准确全面的识别出文档包含的所有新词。
-
公开(公告)号:CN107633044A
公开(公告)日:2018-01-26
申请号:CN201710827984.4
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于热点事件的舆情知识图谱构建方法,属于自然语言处理领域;首先实时获取微博文本,对每个微博文本进行处理,构建文本簇,计算每个文本簇所属的话题类别,按类别识别每个簇中的热点事件,统计每个热点事件的多维属性;识别参与热点事件讨论的重要人物和机构,并获取重要人物和机构的多维属性;最后构建事件、人物、机构的多维属性体系及关系类型,以事件、人物、机构为实体,事件、人物、机构之间的关系为关联,构建舆情知识图谱。本发明能够从多个维度对热点事件、人物、机构进行刻画,实现对热点事件、人物、机构的全方位解析;并根据实际需求,设置不同话题类别的权重,实现不同话题的舆情知识图谱构建。
-
公开(公告)号:CN103778200B
公开(公告)日:2017-08-08
申请号:CN201410010836.X
申请日:2014-01-09
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种报文信息源抽取方法及其系统,该方法通过匹配信息源抽取规则库的关键词提取报文中的信息源,并匹配信息源抽取规则库的规则判断信息源类型,该方法包括:报文解析步骤和信息源抽取步骤,报文解析步骤用于根据输入的文本,提取文本中的字符,并对字符进行断句处理为不同分句,信息源抽取步骤为根据信息源抽取规则库对分句进行关键词匹配,对分句抽取有用要素序列,并在有用要素序列上,提取信息源,并通过匹配信息源抽取规则库的规则判断信息源类型。
-
公开(公告)号:CN106980692A
公开(公告)日:2017-07-25
申请号:CN201710213302.0
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于微博特定事件的影响力计算方法,属于社交网络分析及数据挖掘技术领域。本发明依据传播学中事件发展的五个阶段对特定事件进行了相关分析划分并应用于影响力计算中,主要针对微博文本数据及基础的用户数据进行统计处理与自然语言处理,计算传播角度和内容角度兼顾的六项影响力指标,并使用K‑means机器学习算法对子话题进行划分;最终得出特定事件的影响力热度指数EII、事件内的用户影响力排行榜、消息影响力排行榜。对比现有技术,本发明考虑微博文本的内容指标,较全面而准确地反映了事件各方面的信息,具有很强的现实意义和实用价值。此外,本发明方法计算的时空耗费不高,易于模块化,可投入大规模的数据计算,具有较好的稳定性。
-
公开(公告)号:CN106202047A
公开(公告)日:2016-12-07
申请号:CN201610559542.1
申请日:2016-07-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明公开了一种基于微博文本的人物性格刻画方法,属于数据挖掘领域;具体包括:首先,针对某个用户,对该用户某段时间内发的每条微博文本标注情绪标签,统计该用户每天冲动类以及抑郁类情绪的主导天数,从情绪特征角度对用户进行标记;然后,对该用户的所有微博文本进行关注话题分类,并选择该用户的关注话题;判断该用户的关注话题是否包括政治类和民生类,如果有,利用批判性词典对该用户进行语言特征刻画;否则,不做任何处理;最后、融合该用户的情绪特征和语言特征刻画该用户的性格,得到性格标签。优点在于:适用于对微博中人物性格特征刻画和分析,在舆情监控、人物属性刻画和信息传播扩散等领域有重要的应用价值。
-
-
-
-
-
-
-
-
-